SpellGCN: Incorporating Phonological and Visual Similarities intoLanguage Models

该博客探讨了一种创新方法,通过图卷积网络(GCN)改变BERT分类层的权重初始化,以提高模型性能。作者分析了复现结果,并提出疑问:如何更好地整合混淆词信息并确保模型在不同领域数据集上的迁移学习能力。博客内容涉及自然语言处理、深度学习和模型优化技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型结构图:

创新点:通过图卷积网络改变了分类层的权值W (原来直接使用bert的embedding层权值初始化)

复现结果以及分析:

那么还有什么方法可以更好的融入易混词(混淆集)的相关信息,并且是可迁移到很多不同领域的数据集上呢(可学习)?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺旺棒棒冰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值