
Kafka
文章平均质量分 94
专业WP网站开发-Joyous
专业WordPress、Shopify开发,Google SEO专家,Google Ads投流,欢迎咨询
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Apache Kafka如何保证消息不丢失及实现Exactly-Once语义
Kafka 通过acks=all、多副本、手动提交确保消息不丢失,通过事务和实现 Exactly-Once。金融交易系统实现 P99 延迟 40ms、QPS 12 万。不丢失acks=all,多副本。:事务生产者。优化:批处理、异步提交。监控Kafka 是高可靠消息系统的核心,未来将在云原生和 AI 下演进。字数:约 5100 字(含代码)。如需调整,请告知!Kafka 通过acks=all、多副本、手动提交确保消息不丢失,通过事务和实现 Exactly-Once。原创 2025-06-27 21:26:06 · 927 阅读 · 0 评论 -
Java与Kafka实现实时数据流处理:从基础到云原生实践
Apache Kafka是一个分布式流处理平台,擅长处理高吞吐量、容错的实时数据流。高吞吐量:支持每秒百万级消息。低延迟:毫秒级消息传递。可扩展性:分布式架构,支持水平扩展。持久化:消息存储于磁盘,支持回溯。容错:通过副本机制保障高可用。日志分析:实时收集和处理服务器日志。实时推荐:电商平台个性化推荐。物联网:处理传感器数据流。事件驱动:微服务间异步通信。Java通过Spring Kafka、Kafka Streams和云原生技术实现实时数据流处理,显著提升性能和稳定性。原创 2025-05-21 09:49:45 · 1585 阅读 · 0 评论 -
Apache Kafka:分布式流处理平台的技术解析与应用实践
Apache Kafka 是一个开源的分布式流处理平台,最初由 LinkedIn 开发,于 2011 年开源,现由 Apache 软件基金会维护。Kafka 设计为高吞吐、低延迟的发布-订阅消息系统,适用于处理大规模、实时的数据流。相比传统消息队列(如 RabbitMQ、ActiveMQ),Kafka 强调持久化存储、水平扩展和流处理能力,常被用作数据管道、日志聚合和事件溯源的骨干。是一个高性能、分布式的流处理平台,适合实时数据管道、事件驱动架构和日志聚合。核心特性包括高吞吐、低延迟和持久化存储。原创 2025-05-08 13:48:18 · 774 阅读 · 0 评论 -
深入剖析 Kafka 的零拷贝原理:从操作系统到 Java 实践
零拷贝(Zero-Copy)是一种操作系统层面的优化技术,旨在减少数据在用户态和内核态之间的拷贝次数,以及 CPU 的直接参与,从而提升 I/O 操作的效率。传统 I/O 操作涉及多次数据拷贝,而零拷贝通过直接在内核空间传输数据,显著减少了开销。在消息队列(如 Kafka)中,零拷贝特别适用于从磁盘读取消息并通过网络发送的场景,避免了不必要的数据复制,提升了吞吐量。Kafka 的零拷贝原理基于操作系统的sendfile技术,通过减少 CPU 拷贝和上下文切换,实现从磁盘到网络的高效传输。原创 2025-04-11 17:39:34 · 1028 阅读 · 0 评论 -
Kafka 消费者状态及高水位(High Watermark)详解
Kafka 消费者负责从 Kafka 的分区中读取消息。消费者可以独立工作,也可以以消费者组(Consumer Group)的形式进行消费。在消费者组中,Kafka 会确保每个分区仅被一个消费者消费,以防止数据重复消费。消费者组的分区分配是动态的,如果消费者加入或离开消费者组,Kafka 会进行重平衡(Rebalance)以重新分配分区。了解消费者的工作状态对于监控 Kafka 系统的健康和确保消息消费的正确性至关重要。原创 2024-09-29 10:24:15 · 1911 阅读 · 2 评论 -
Kafka 的重平衡问题详解及解决方案
重平衡(Rebalance)是 Kafka 在消费者组内部重新分配分区(Partition)的过程。Kafka 的消费者组是一个逻辑概念,它允许多个消费者实例(Consumer)共同消费一个或多个主题(Topic)的分区。每个分区只能被一个消费者组中的一个消费者消费。因此,重平衡的目的是确保分区在消费者组中的消费者之间合理分配。Kafka 提供了多种分区分配策略,但在某些业务场景中,开发者可以根据需求实现自定义的分区分配策略,确保分区分配的灵活性和均衡性。// 实现自定义分区分配策略@Override。原创 2024-09-29 10:23:56 · 2611 阅读 · 0 评论