【机器学习】数据读取与数据扩增

1 数据读取与数据扩增

本文章主要由数据读取、数据扩增方法和Pytorch读取数据三个部分组成。

1.1 学习目标

  • 学习Python和Pytorch中图像读取
  • 学会扩增方法和Pytorch读取数据

1.2 图像读取

我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。

1.2.1 Pillow

Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。

from PIL import Image
# 导入Pillow库
# 读取图片
im =Image.open('./cat.png')

from PIL import Image, ImageFilter
im = Image.open('./cat.png')
# 应用模糊滤镜
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg', 'jpeg')

from PIL import Image
# 打开一个jpg图像文件,注意是当前路径
im = Image.open('./cat.jpg')
im.thumbnail((w//2, h//2))
im.save('thumbnail.jpg', 'jpeg')

当然上面只演示了Pillow最基础的操作,Pillow还有很多图像操作,是图像处理的必备库。
Pillow的官方文档:https://pillow.readthedocs.io/en/stable/

1.2.2 OpenCV

OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。

import cv2
# 导入Opencv库
img = cv2.imread('./cat.jpg')
# Opencv默认颜色通道顺序是BRG,转换一下
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

import cv2
# 导入Opencv库
img = cv2.imread('./cat.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为灰度图

import cv2
# 导入Opencv库
img = cv2.imread('./cat.jpg')
img =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 转换为灰度图
# Canny边缘检测
edges = cv2.Canny(img, 30, 70)
cv2.imwrite('canny.jpg', edges)

OpenCV包含了众多的图像处理的功能,OpenCV包含了你能想得到的只要与图像相关的操作。此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。
OpenCV官网:OpenCV - Open Computer Vision Library
OpenCV Github:GitHub - opencv/opencv: Open Source Computer Vision Library
OpenCV 扩展算法库:GitHub - opencv/opencv_contrib: Repository for OpenCV's extra modules

1.3 数据扩增方法

1.3.1 数据扩增介绍

在深度学习中数据扩增方法非常重要,数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。

  • 数据扩增为什么有用?
    在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
    其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。

  • 有哪些数据扩增方法?
    数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
    对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。
1.3.2 常见的数据扩增方法

在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。

以torchvision为例,常见的数据扩增方法包括:

  • transforms.CenterCrop 对图片中心进行裁剪
  • transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
  • transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
  • transforms.Grayscale 对图像进行灰度变换
  • transforms.Pad 使用固定值进行像素填充
  • transforms.RandomAffine 随机仿射变换
  • transforms.RandomCrop 随机区域裁剪
  • transforms.RandomHorizontalFlip 随机水平翻转
  • transforms.RandomRotation 随机旋转
  • transforms.RandomVerticalFlip 随机垂直翻转

1.3.3 常用的数据扩增库

1.4 Pytorch读取数据

我们使用Pytorch框架讲解具体的解决方案,第一步使用Pytorch读取数据。在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

data = SVHNDataset(train_path, train_label,
          transforms.Compose([
              # 缩放到固定尺寸
              transforms.Resize((64, 128)),

              # 随机颜色变换
              transforms.ColorJitter(0.2, 0.2, 0.2),

              # 加入随机旋转
              transforms.RandomRotation(5),

              # 将图片转换为pytorch 的tesntor
              # transforms.ToTensor(),

              # 对图像像素进行归一化
              # transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
            ]))

通过上述代码,可以将图像数据和对应标签进行读取,在读取过程中的进行数据扩增,效果如下所示:

接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能。

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取

    加入DataLoder后,数据读取代码改为如下:

import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                   transforms.Compose([
                       transforms.Resize((64, 128)),
                       transforms.ColorJitter(0.3, 0.3, 0.2),
                       transforms.RandomRotation(5),
                       transforms.ToTensor(),
                       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])), 
    batch_size=10, # 每批样本个数
    shuffle=False, # 是否打乱顺序
    num_workers=10, # 读取的线程个数
)

for data in train_loader:
    break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:

torch.Size([10, 3, 64, 128]), torch.Size([10, 6]) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值