26、情感分类器阈值、多分类器及实际应用分析

情感分类器阈值、多分类器及实际应用分析

1. 阈值与局部阈值的应用

在情感分类任务中,使用比例性作为衡量指标有助于我们发现总体趋势。大多数分类器在多标签数据集上,如果允许中性作为一个标签,尤其是在考虑比例性时,表现会更好。不过,LEX 即使不将中性作为标签,也能有不错的表现。

接下来探讨阈值的使用。多数分类器会为每条推文的每个选项提供分数,默认设置是选择分数最高的选项。但假设分类器为每条推文只分配一个标签,会对其性能设置一个严格的上限。我们可以设置一个阈值,将超过该阈值的选项都作为标签。

例如,对于推文 “Hi guys ! I now do lessons via Skype ! Contact me for more info . # skype # lesson # basslessons # teacher # free lesson # music # groove # rock # blues.”,黄金标准分配的分数为 (‘anger’, 0), (‘anticipation’, 1), (‘disgust’, 0), (‘fear’, 0), (‘joy’, 1), (‘love’, 0), (‘optimism’, 0), (‘pessimism’, 0), (‘sadness’, 0), (‘surprise’, 0), (‘trust’, 0),应标记为 anticipation + joy。

Naive Bayes 为该推文分配的分数为 (‘anger’, ‘0.00’), (‘anticipation’, ‘0.88’), (‘disgust’, ‘0.00’), (‘fear’, ‘0.00’), (‘joy’, ‘0.11’), (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值