信息度量(二):信息熵与平均互信息


在第一部分中,我们对随机事件的信息量度有了一定的了解,本文将会以此为基础说明随机变量的平均信息量,即熵。

信息熵

信息熵

离散随机变量 X X X的熵为自信息的平均值,记为 H ( X ) H(X) H(X) H ( X ) = E p ( x ) [ I ( x ) ] = E p ( x ) [ − log ⁡ p ( x ) ] = − ∑ x p ( x ) log ⁡ p ( x ) H(X)=\underset{p(x)}{E}\left[I(x)\right]=\underset{p(x)}{E}\left[-\log{p(x)}\right]=-\sum\limits_x{p(x)\log{p(x)}} H(X)=p(x)E[I(x)]=p(x)E[logp(x)]=xp(x)logp(x)其中, I ( x ) I(x) I(x)表示事件 x x x的自信息; E p ( x ) \underset{p(x)}{E} p(x)E表示对随机变量用 p ( x ) p(x) p(x)取算术平均。
信息熵 H ( X ) H(X) H(X)在平均意义上表征了信源的总体特征。在信源输出前,表示信源的平均不确定度。在信源输出后,表示一个信源符号所提供的平均信息量。

条件熵

条件熵为联合集 X Y XY XY熵的条件自信息 I ( y ∣ x ) I(y|x) I(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值