
评测
文章平均质量分 92
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何评估大型语言模型(LLM)系统
要构建可靠且高性能的LLM应用,在开发工作流程中提前进行评估不仅有益,而且至关重要。通过从一开始就集成以评估为导向的方法,团队可以主动发现差距、改进实现,并确保尽早与用户期望保持一致。原创 2025-08-03 08:15:00 · 697 阅读 · 0 评论 -
基准测试检索增强生成(RAG)管道:指标、挑战与洞见
RAG系统为企业提供了一种强大的工具,能够生成准确、有依据的实时答案,但要确保其性能,必须进行全面、系统的评估。通过明确评估的部分和指标,正视评估过程中面临的挑战,并从中获取有价值的洞见,开发者可以不断优化RAG管道,提高系统的可靠性、准确性和实用性。原创 2025-07-12 08:15:00 · 985 阅读 · 0 评论 -
LLM评估:从原型开发到生产部署的全流程实践
正如文中案例所示,一个成熟的LLM评估框架并非一蹴而就,而是需要结合业务需求、技术选型和行业特性,通过不断迭代逐步完善。未来,随着评估工具的智能化(如自动生成测试用例、动态调整指标权重),LLM评估将成为AI工程化中愈发关键的基础设施,推动大语言模型从"实验室奇迹"走向"工业级解决方案"。原创 2025-06-13 08:15:00 · 692 阅读 · 0 评论 -
从执行轨迹到结果质量:AI 代理系统评估的核心要素与方法论
人工智能代理系统的评估是一个复杂的挑战,远远超出了传统的模型评估。它不仅需要理解最终输出,还需要理解系统的中间决策、工具使用和推理路径。通过采用基于代码的评估、以大型语言模型作为评判者的评估和人工标注等多种评估方法,结合对代理轨迹的分析,我们可以更全面、准确地评估人工智能代理系统的性能。原创 2025-06-01 08:15:00 · 863 阅读 · 0 评论 -
理解LLM评估指标综述:可靠评估LLM的最佳实践
大语言模型(LLMs)作为强大工具,在众多领域崭露头角。从客户服务、市场营销,到研究和产品开发,大语言模型的应用日益广泛,它们能够简化流程、辅助决策并提升用户体验。然而,能力越大,责任越大。确保这些模型的可靠性、性能和适用性至关重要,而大语言模型评估指标在其中发挥着关键作用。原创 2025-05-20 08:15:00 · 991 阅读 · 0 评论 -
LLM(大模型)评估综述:现状、挑战与未来方向
允许开发者根据具体需求定义评估逻辑,如检查模型输出是否包含关键信息等。大语言模型在部署前必须经过严格的评估。评估不仅能够验证模型的准确性、公平性和可靠性,还能帮助开发者发现潜在问题并加以改进。通过评估,可以确保模型在真实世界的应用中不会产生误导性信息、偏见内容或其他不良输出,从而赢得用户的信任。原创 2025-02-15 08:15:00 · 1435 阅读 · 0 评论 -
评估大模型(LLM)摘要生成能力:方法、挑战与策略
随着 LLMs 在摘要生成任务中的应用日益广泛,评估其生成摘要的质量至关重要。优质的摘要能够帮助用户迅速把握文本核心内容,节省大量阅读时间。在学术研究中,研究者可以通过准确的文献摘要快速筛选相关资料;在商业领域,决策者能够依据精准的行业报告摘要做出明智的决策。相反,低质量的摘要可能会误导用户,导致信息获取错误,甚至影响决策的准确性。准确评估 LLM 摘要(RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象。原创 2025-02-08 17:12:02 · 1119 阅读 · 0 评论 -
法律领域检索增强生成(RAG)的基准
LegalBench - RAG 作为首个专门设计用于评估法律领域 RAG 系统检索组件的基准,通过利用现有专家标注的法律数据集并精心映射问答对到原始上下文,为评估检索精度和召回率提供了强大框架。原创 2024-12-03 14:59:57 · 1478 阅读 · 0 评论 -
Agent-as-a-Judge:AI系统评估新思路
Agent-as-a-Judge 框架是 AI 系统评估方法的重大突破。它克服了传统评估方法的缺陷,通过智能体评估智能体,在任务解决过程中提供丰富动态反馈,具有成本效益高、可扩展性强等优势。原创 2024-11-30 08:20:17 · 1070 阅读 · 0 评论