大型语言模型在处理自然语言任务时,通常依赖于大量的训练数据和复杂的神经网络结构。尽管这些模型在生成文本和回答问题方面表现出色,但在面对需要复杂推理的任务时,它们的表现往往不尽如人意。为了克服这一挑战,研究人员开发了一种名为“思维链”(Chain-of-Thought,CoT)的引导方法。CoT(Chain-of-Thought (CoT):引导大型语言模型解决问题的有效策略)通过要求模型在回答问题之前生成一系列中间推理步骤,从而诱导模型进行更有条理和逻辑性的思考。
CoT方法有两种主要范式:一种是添加简单的提示语,如“让我们一步一步思考”,以促进LLMs生成推理链;另一种是使用手动设计的演示,每个演示都包含一个问题和一条通向答案的推理链。尽管第二种范式在实践中取得了显著成效,但它依赖于对特定任务的手动设计,这限制了其广泛应用。
为了减轻手动设计演示的负担,并进一步提高CoT方法的效率和准确性,研究人员提出了自动思维链(Auto-CoT)方法。Auto-CoT通过自动构建演示,实现了对LLMs推理能力的有效引导,从而在不牺牲性能的情况下,大大降低了人力成本。
一、自动思维链的原理与方法
Auto-CoT方法的核心在于自动构建包含问题和推理链的演示。这一过程主要分为两个步骤:问题聚类和演示采样。
-
问题聚类:首先,将给定数据集中的问题划分为几个簇。这一步骤的目的是确保每个簇中的