Spark技术详解
Apache Spark是一个快速、通用的大规模数据处理引擎。本文将详细介绍Spark的核心概念、架构设计、编程模型以及最佳实践。
1. Spark概述
1.1 基本概念
- 内存计算引擎
- 分布式计算框架
- 统一编程模型
- 丰富的生态系统
- 高性能数据处理
1.2 核心特性
- 快速:基于内存计算,比Hadoop快100倍
- 通用:支持多种计算范式
- 易用:提供丰富的API
- 兼容:支持多种数据源
- 可扩展:支持多种部署模式
1.3 应用场景
- 批处理
- 流处理
- 机器学习
- 图计算
- SQL查询
2. 核心组件
2.1 Spark Core
2.1.1 基本概念
-
RDD(弹性分布式数据集)
- 不可变
- 分区
- 容错
- 并行计算
- 数据本地化
-
转换操作(Transformations)
- map
- filter
- flatMap
- groupBy
- reduceByKey
-
行动操作(Actions)
- collect
- count
- save
- reduce
- foreach
2.1.2 编程示例
// RDD操作示例
val textFile = spark.read.textFile("hdfs://...")
val wordCounts = textFile
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.collect()
<