
机器学习(理论篇)
文章平均质量分 93
liying_tt
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Day05-《西瓜书》-支持向量机(DataWhale)
六、支持向量机**来源:**https://www.bilibili.com/video/BV1Mh411e7VU?p=96.1 间隔与支持向量 训练样本集D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1}D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\},y_i\in\{-1,+1\}D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1},分类学习的基本思想是:基于训练集D在样本空间中找到一个原创 2021-07-29 09:11:33 · 176 阅读 · 0 评论 -
Day04-《西瓜书》-神经网络(DataWhale)
五、神经网络(neural networks)5.1 神经元模型(neuron)神经元接收到来自n个其他神经元传递的输入信号,这写信号通过带权重的连接进行传递,神经元接受到的总输入值与神经元的阈值进行比较后,通过激活函数处理产生神经元的输出。激活函数理想的激活函数是阶跃函数,但是阶跃函数步连续,不光滑。实际使用Sigmoid函数。将一个神经网络视为包含了许多参数的数学模型,这个模型有若干个函数。例如yi=f(∑iwixi−θj)y_i = f(\sum_iw_ix_i-\theta_j)y原创 2021-07-25 19:02:29 · 545 阅读 · 3 评论 -
Day01-《西瓜书》-模型评估与选择(DataWhale)
一、绪论出处:Datawhale吃瓜教程(https://www.bilibili.com/video/BV1Mh411e7VU)案例:水果摊旁,挑个根蒂蜷缩,敲起来声音浊响的青绿西瓜。期待是皮薄后瓤甜的瓜1.1 引言机器学习研究如何通过计算的手段,利用经验来改善系统自身的性能。经验以数据形式存在学习算法在计算机上从数据中产生模型的算法模型泛指从数据中学到的结果机器学习分类根据训练数据是否拥有标记信息监督学习(supervised learning):分类原创 2021-07-13 11:52:05 · 241 阅读 · 1 评论 -
Day03-《西瓜书》-决策树(DataWhale)
四、决策树(decision tree)4.1 基本流程决策树是通过一系列规则对数据进行分类的过程。决策树表示给定特征条件下类的条件概率分布决策树组成:内部结点(internal node):表示一个特征或属性叶结点(leaf node):一个类别或某个值决策树生成步骤:特征选择决策树生成决策树的修剪4.2 决策树算法4.2.1 基础知识信息熵自信息:I(X)=−logbp(x)I(X) = -log_bp(x)I(X)=−logbp(x)熵的理论解释原创 2021-07-22 20:03:35 · 416 阅读 · 2 评论 -
Day02-《西瓜书》-线性模型(DataWhale)
三、线性模型**出处:**Datawhale吃瓜教程(https://www.bilibili.com/video/BV1Mh411e7VU)具有很好的可解释性(comprehensibility)机器学习三要素:模型:根据具体问题,确定假设空间策略:根据评估标准,确定选取最优模型的策略(通常会产生一个“损失函数”)算法:求解损失函数,确定最优模型3.1 基本形式给定d个属性描述的示例$ \mathbf{x}=(x_1,x_2,…,x_d)$线性模型:f(x)=ω1x1+ω2x2+.转载 2021-07-19 21:27:28 · 117 阅读 · 0 评论