文章目录
前言
在通信系统中存在着随机信号的情况,如通信元件存在热噪声,从而使得信号幅值叠加上一层白噪声,引入了随机性;抑或是信道的非理想,也会对信号引入随机性;再或者发送信号时就是随机选取一个信号波形传输。
因此,有必要对随机信号进行分析。与确定信号不同,随机信号没有办法获取确定的时域信号与频谱图。我们需要寻找其他信号分析方法。下面让我们从认识随机信号开始介绍吧。
一、随机过程
在概率论中我们学过随机变量的定义——用数值表示随机实验结果的变量。比如一个普通的骰子,投一次得到的结果的点数就是一个随机变量。那么,如果我们投出的点数不是一个确定的值,而是一个确定的函数呢?
这种情况下,随机实验的结果就是不用一个变量来表示了,而是用一个随机过程 X ( a ) X(a) X(a),每次随机实验的结果也变成了一个函数 x i ( a ) x_i(a) xi(a)。如果说所有这个函数是关于时间变化的电压值——也就是信号,那么这个随机过程就是一个随机信号。
举个例子,在接收端,接收者并不知道它将会收到什么样的信号,那么它接受的信号 X ( t ) X(t) X(t)就是一个随机信号,每次收到的信号都具有随机性。是的,随机过程和随机变量的区别,就是最终实验的结果是个数值还是一个函数。
二. 随机过程的统计特征
概率论中,我们要分析一个随机变量的统计特征,可以考察它的期望和方差。对于随机过程也是类似。但是由于这时候随机选出来的是一个函数,求出来的期望自然也成了函数而非一个数值:
E X ( t ) = m ( t ) EX(t)=m(t) EX(t)=m(t)
通过上式,我没有容易得到一个零均值的随机过程 X ′ ( t ) = X ( t ) − m ( t ) X'(t)=X(t)-m(t) X′(t)=X(t)−m(t)。对于任意给定的 t 0 t_0 t0值, X ( t 0 ) X(t_0) X(t0)就退化成了随机变量,我们知道对随机变量统一加减一个常数 m ( t 0 ) m(t_0) m(t0)是不会影响方差的,所以我我们有原随机过程方差为:
D ( X ( t ) ) = D ( X ′ ( t ) ) = E X ′ 2 ( t ) − E ( X ′ ( t ) ) 2 = E X ′ 2 ( t ) D(X(t))=D(X'(t))=EX'^2(t)-E(X'(t))^2=EX'^2(t) D(X(t))=D(X′(t))=EX