【flink】 flink 读取debezium-json数据获取数据操作类型op/rowkind方法

flink 读取debezium-json数据获取数据操作类型op/rowkind方法。
op类型有c(create),u(update),d(delete)
参考官网案例:此处的"op": "u",就是操作类型。

{
  "before": {
    "id": 111,
    "name": "scooter",
    "description": "Big 2-wheel scooter",
    "weight": 5.18
  },
  "after": {
    "id": 111,
    "name": "scooter",
    "description": "Big 2-wheel scooter",
    "weight": 5.15
  },
  "source": {...},
  "op": "u",
  "ts_ms": 1589362330904,
  "transaction": null
}

思路:添加自定义metareader
具体修改方法:去github flink 下载flink源码,选择tags,后按照自己需要的版本下载。
至idea中。修改org.apache.flink.formats.json.debezium.DebeziumJsonDecodingFormat

enum ReadableMetadata枚举类中添加枚举对象:
注意:operation.type可以按需更改,opudf也能按需更改,但不能是op,否则原有的冲突。
添加如下代码:

        OPERATION_TYPE(
                "operation.type",
                DataTypes.STRING().nullable(),
                true,
                DataTypes.FIELD("opudf", DataTypes.STRING()),
                new MetadataConverter() {
                    private static final long serialVersionUID = 1L;

                    @Override
                    public Object convert(GenericRowData row, int pos) {
                        return row.getString(2);
                    }
                })

编译项目:

# install
mvn clean package -DskipTests "-Dmaven.test.skip=true" "-Pfast" -pl flink-formats/flink-json
# maven install 到本地
mvn install:install-file "-DgroupId=org.apache.flink" "-DartifactId=flink-json-udf" "-Dversion=1.13.6" -Dpackaging=jar "-Dfile=D:\projects\flink-release-1.13.6\flink-formats\flink-json\target\flink-json-1.13.6.jar"

# gradle 不能使用 implement(files("libs/flink-json-1.13.6.jar")) 的方式。需要直接加载到仓库。或者user/.m2目录下的临时仓库。
# 如下路径不能直接复制,可供参考,自己找下。
copy D:\projects\flink-release-1.13.6\flink-formats\flink-json\target\flink-json-1.13.6.jar D:\env\Gradle_Repository\caches\modules-2\files-2.1\org.apache.flink\flink-json\1.13.6\cb4daaf018e2
10faa54e76488cbb11e179502728


使用方法:
添加列定义:
opt_type STRING METADATA FROM 'value.operation.type' VIRTUAL,

create table test.some_debezium
(
    event_time      TIMESTAMP(3) METADATA FROM 'value.source.timestamp' VIRTUAL,
    origin_database STRING METADATA FROM 'value.source.database' VIRTUAL,
    origin_table    STRING METADATA FROM 'value.source.table' VIRTUAL,
    opt_type        STRING METADATA FROM 'value.operation.type' VIRTUAL,
    id            BIGINT,
    name          STRING,

) WITH(
    'connector'='kafka',
    'topic'='your_topic',
    'properties.bootstrap.servers'='host1:6667,host2:6667,host3:6667',
    'properties.group.id'='your_group_id',
    'properties.security.protocol'='SASL_PLAINTEXT',
    'properties.sasl.kerberos.service.name'='kafka',
    'format'='debezium-json',
    'debezium-json.timestamp-format.standard'='ISO-8601',
    'debezium-json.schema-include'='true',
    'debezium-json.ignore-parse-errors'='true'
);
<think>好的,我现在需要帮助用户解决如何使用Flink SQL解析和处理不同格式的JSON数据的问题。首先,我应该回顾用户提供的参考信息,特别是引用[1]和引用[2]。 引用[1]详细列出了Flink SQL与JSON数据类型的映射关系,这说明在Flink中处理JSON时,数据类型的正确映射非常重要。比如,JSON中的字符串对应Flink的CHAR/VARCHAR/STRING,而JSON中的数字可能对应DECIMAL或各种整数类型。因此,用户在定义表结构时需要确保字段类型正确匹配,否则解析可能会失败。 接下来,引用[2]提到debezium-json格式并不局限于CDC数据源,可以应用于任何动态表。这意味着即使用户的数据来自Kafka或其他非CDC源,只要格式正确配置,也能使用debezium-json来处理变更日志。这扩展了Flink处理JSON的应用场景,不仅仅是数据库变更数据,还可以是其他来源的JSON数据。 用户的问题涉及多种格式的JSON数据,可能需要处理普通JSON、嵌套JSON以及CDC格式如debezium-json。我需要分步骤说明如何处理这些情况。 首先,处理简单JSON结构,用户需要创建表时指定format为json,并正确定义字段类型。例如,从Kafka读取JSON数据,每个字段对应相应的Flink SQL类型。 然后,处理嵌套JSON,需要使用Flink SQL的ROW类型来定义嵌套结构,可能还需要使用JSON函数如JSON_VALUE或JSON_OBJECT来提取或构造嵌套字段。例如,解析address中的city和street,需要将address字段定义为ROW类型,并访问其子字段。 接下来,处理CDC格式如debezium-json,用户需要在建表时指定format为debezium-json。这种格式包含元数据操作类型op)和时间戳(ts_ms),这些信息在数据处理时非常有用,特别是需要处理数据变更的场景。需要注意的是,虽然debezium通常与CDC关联,但引用[2]指出它也可以用于其他数据源,只要数据格式符合要求。 此外,可能还需要考虑不同JSON格式之间的转换,例如将普通JSON转换为debezium-json格式,或者处理数组和MAP类型Flink SQL提供了相应的函数和类型支持,比如使用ARRAY和MAP类型,或者通过LATERAL TABLE展开数组元素。 在性能优化方面,可能需要提到合理选择时间属性,比如使用PROCTIME()或事件时间,以及利用Flink的状态管理来处理乱序事件。同时,正确配置解析器选项,如忽略解析错误,可以避免作业因数据格式问题而失败。 最后,用户可能需要了解如何将处理后的数据写入到其他系统,比如另一个Kafka主题或数据库,这时候需要配置sink表的connector和format,确保输出格式正确。 需要验证这些步骤是否覆盖了用户的需求,特别是处理不同格式时的配置差异,以及如何提取和操作嵌套字段。可能还需要提醒用户注意常见错误,比如类型不匹配或格式配置错误,以及如何通过Flink的日志和异常信息进行调试。</think>### 使用 Flink SQL 解析和操作多种格式的 JSON 数据 #### 1. **基础 JSON 解析** Flink SQL 通过指定 `format = 'json'` 可直接解析标准 JSON 字符串。需在表定义中明确字段与类型的映射: ```sql CREATE TABLE json_table ( id INT, name STRING, event_time TIMESTAMP(3) ) WITH ( 'connector' = 'kafka', 'format' = 'json', 'json.fail-on-missing-field' = 'false' -- 允许字段缺失 ); ``` 此方式适用于简单 JSON 结构,字段直接对应 Flink 类型[^1]。 --- #### 2. **处理嵌套 JSON** 对于嵌套 JSON(如包含对象或数组),需使用 `ROW` 类型定义嵌套结构: ```sql CREATE TABLE nested_json_table ( user_id INT, address ROW<city STRING, street STRING>, tags ARRAY<STRING> ) WITH ( 'connector' = 'kafka', 'format' = 'json' ); -- 提取嵌套字段 SELECT user_id, address.city, tags[1] FROM nested_json_table; ``` 通过 `ROW` 和 `ARRAY` 类型可精准描述 JSON 的层级结构[^1]。 --- #### 3. **解析 CDC 格式(如 Debezium-JSON)** 若 JSON 数据是 CDC 变更日志(如 Debezium 生成),需使用 `format = 'debezium-json'`: ```sql CREATE TABLE debezium_json_table ( before ROW<id INT, name STRING>, after ROW<id INT, name STRING>, op STRING, ts_ms BIGINT ) WITH ( 'connector' = 'kafka', 'format' = 'debezium-json' ); -- 筛选插入操作 SELECT after.id, after.name FROM debezium_json_table WHERE op = 'c'; ``` 此格式会包含操作类型 (`op`)、时间戳 (`ts_ms`) 等元数据,支持增量数据处理[^2]。 --- #### 4. **动态处理 JSON 字段** 若 JSON 结构动态变化,可通过 `JSON_VALUE` 和 `JSON_OBJECT` 函数灵活操作: ```sql -- 提取嵌套字段值 SELECT JSON_VALUE(raw_data, '$.user.location.city') AS city, JSON_OBJECT('name', name, 'age', age) AS new_json FROM raw_data_table; ``` 此方法适用于非固定结构或需要动态重组的场景。 --- #### 5. **类型映射与容错** 注意 FlinkJSON 类型映射规则(如 JSON 数字默认映射为 `DOUBLE`),需显式转换: ```sql -- 强制类型转换 SELECT CAST(JSON_VALUE(data, '$.count') AS INT) FROM table; ``` 同时可通过配置 `json.ignore-parse-errors = 'true'` 跳过解析错误[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值