剑指offer第一题——二维数组中的查找

本文探讨了在特定排序条件下,二维数组中寻找特定整数的两种方法。首先介绍了一种简单但效率较低的双循环遍历法,接着深入解析了更高效的二分查找法,包括如何将二维数组转换为一维并排序,以及二分查找的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

method1:使用两重循环,这样时间复杂度为O(n2),太低效

function Find(target, array)
{
	var flag = false;
    // write code here
    for(var i=0;i<array.length;i++) {
    	var tmp = array[i];
        for(var j=0;j<tmp.length;j++) {
        	
            if(array[i][j]===target) {
            	flag = true;
                break
            }
        }
    }
    return flag; 
}

method2:使用二分法

思路是,先将二维数组转化为一维数组,然后对一维数组进行排序,假如按照升序方法排序,则排序后数组应该是有序递增,这样就可以方便地使用二分法进行比较;

二分法的思想是:选定这批数中居中间位置的一个数与所查数比较,看是否为所找之数,若不是,利用数据的有效性,可以决定所找的数是在选定数之前还是之后,从而很快可以将查找范围缩小一半,以同样的方法在选定的区域中进行查找,每次都会将查找范围缩小一半,从而较快地找到目的数。

function Find(target, array)
{
    // write code here
    var tmp = [];
    tmp = array.reduce(function (a,b) {
    	return a.concat(b)
    })
    // 传入排序函数的原因如下
    tmp.sort(function(a,b) {
    	return a - b;
    })
    // 新建一个标志,用于while循环条件
    var flag = true;
    // max 存储查找范围内下标的最大值
    var max = tmp.length-1;
    // min 存储查找范围内下标的最小值
    var min = 0;
    // mid 表示查找范围内中间值的下标
    var mid = Math.floor((max + min)/2);
    while(flag) {
    	if (min > max) { return false; }
    	if( target === tmp[mid] ) {
    		// flag = true;
    		// return flag;
    		return true;
    	} else if(target < tmp[mid]) {
	    	max = mid - 1;
	    	mid = Math.floor((max + min)/2);
	    } else if(target > tmp[mid]) {
	    	min = mid + 1;
	    	mid = Math.floor((max + min)/2);
	    }
    }
}

在使用sort()方法进行数组排序的时候应该注意一点,当不带参数调用sort方法时,数组元素以字母表顺序进行排序(如果有必要将临时转化为字符串进行比较),为了按照其他方式而非字母表顺序进行数组排序,必须sort() 方法传递一个比较函数。该函数决定了他的两个参数在排好序的数组中的先后顺序。假设第一个参数应该在前,比较函数应该返回一个小于0的数值。反之返回一个大于0的数值。并且,假设两个值相等,函数的返回值应该为0,因此若用数值大小而非字母表顺序进行数组的排序,代码如下:

var a = [33, 4, 1111, 222];
console.log(a.sort());               // [ 1111, 222, 33, 4 ]
console.log(a.sort(function(a,b) {
	return a - b;
}));                                 // [ 4, 33, 222, 1111 ]

console.log(a.sort(function (a,b) {
	return b - a;
}))                                  // [ 1111, 222, 33, 4 ]

暂时就写这两种方法,会再次更新

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值