- 博客(218)
- 收藏
- 关注
原创 pycharm中debug的一些小细节
有时 PyCharm 会在该图标附近弹出说明信息,提示出错位置或栈帧。运行 debug 时,就会出现红色小闪电,表示除以零错误(在红色闪电出现时,查看当前变量的状态,可能有某个变量为。PyCharm 在 Debug 模式下出现。,也可能是某段代码执行时。、值不合理或没有初始化。
2025-07-30 15:12:34
361
原创 Python字典get方法使用解析
get() 方法 不会 向 config 字典添加新键值对。它只是安全地读取值,如果键不存在,则返回默认值(这里是 False),但字典本身不会被修改。“尝试从config字典读取agc_enabled的值;如果不存在,就让self.agc_enabled等于False”在Python中,.get() 是字典(dict)类型的内置方法,用于安全地获取字典中的值。default(可选):如果键不存在时返回的默认值(默认为 None)key:要查找的键(Key).get() 的实质行为。
2025-07-24 20:43:31
159
原创 pytorch-geometric包(torch_scatter、torch_sparse、torch_cluster)
注:这里要讲一下torch版本就是pytorch版本,pytorch是torch的python包的名字。看自己的pytorch版本,conda list。cd到那个包,直接pip安装。导入Linux服务器。
2025-07-24 11:31:33
279
原创 kernel panic please reboot your computer. UFS:Unable to mount root fs on unknown-block(0,0)
使用的是 Ubuntu 20.04,物理机,并且你能进入 GRUB 界面,很有可能是因为 自动内核升级导致 initramfs 或驱动问题,造成内核无法挂载根文件系统。
2025-07-22 14:42:39
491
原创 超参数网格搜索是干嘛的
在机器学习中,超参数是在训练模型之前需要手动设置的参数(例如学习率、隐藏层大小、正则化强度等),它们不能通过训练数据直接学习得到。随机搜索(Random Search):从超参数空间中随机取样,而不是全部遍历。每个超参数的候选值在该配置文件中指定(例如:image_knn_k: [10,15,20,40])。贝叶斯优化(Bayesian Optimization):利用历史评估结果指导下一步采样,更智能地搜索超参数空间。定义超参数空间:为每个超参数指定一组候选值。简单直观:容易实现和理解。
2025-07-14 14:12:05
363
原创 AI指令模板综述(Prompt Review)
第一步,将该领域发展划分为3个关键阶段(如萌芽期2000-2010、发展期2011-2018、突破期2019-2023),说明各阶段的标志性成果;第二步,制作对比表格,纵向比较5个代表性研究的:理论框架/技术路线、样本/数据特征、主要结论、局限性(表格需包含8列);所有引用文献必须来自SSCI/SCI一区期刊或CCF-A类会议。第四步,总结当前存在的3个主要争议点,并分析未来可能突破方向。第三步,绘制知识图谱展示各研究间的引用关系与学派分化;
2025-05-20 10:47:46
661
原创 pycharm里debug时如何看到数据的维度
在调试时,PyCharm 会启动一个交互式的 Debug Console(调试控制台),你可以在该控制台中输入 Python 代码进行操作,类似于 Jupyter Notebook 的交互环境。使用 Scientific 模式时,可以直接在右侧面板中查看数据的形状和内容。在弹出的窗口中,输入你想要查看的数据形状表达式,如 your_array.shape 或 your_dataframe.shape。每当程序执行到断点时,PyCharm 会自动更新该 Watch 表达式的值,让你可以实时看到数据的维度。
2024-10-11 21:52:30
1675
原创 liunx运行脚本文件sh,和window运行脚本文件命令及注意事项总结
Windows Subsystem for Linux (WSL) 允许你在Windows上运行Linux环境。脚本文件是用于在类Unix操作系统(如Linux和macOS)中运行的Shell脚本。在Windows中,你可以使用一些工具和环境来运行这些脚本。无论是通过WSL、Git Bash、Cygwin,还是直接使用PowerShell调用WSL,你都可以方便地执行这些脚本。Git Bash 是一个用于Windows的应用程序,提供了一个类似于Linux的命令行环境,可以运行。
2024-08-05 14:37:56
1532
原创 什么情况下跑代码内存才会爆
当出现内存溢出时,首先要检查代码中的数据大小、模型结构、循环处理等部分,并优化批处理大小、使用生成器、减少不必要的内存拷贝或清理无用的变量。合理使用工具如psutil和来监控内存使用情况,也可以帮助预防内存爆掉的情况。
2024-08-04 20:51:00
1155
原创 常见深度学习优化器总结
AdamW和Lookahead是非常值得尝试的选择,特别是在你希望获得更好的泛化能力时。适合在需要更强正则化的场景下使用。RAdam则在初期训练稳定性上有所提升。在切换优化器的同时,你也可以尝试调整学习率和正则化系数等超参数,以进一步提升模型的性能。
2024-08-04 12:14:21
782
转载 torch-sparse安装教程(转载)
torch_geometric、 torch_sparse、 torch_scatter、 torch_cluster是一个大佬根据根据pytorch版本和一些bug修复持续更新的,因此依赖关系比较严重,根据发布的版本应该对应起来进行安装使用。这些是有版本区别的,对应不同的torch版本。
2024-08-02 10:56:28
306
原创 conda 安装和wheel安装什么区别
Conda: 适用于需要多语言包管理、完整环境管理和自动解决依赖关系的场景。适合于数据科学、机器学习等需要多个语言包和环境管理的项目。: 适用于纯 Python 项目,专注于快速安装和管理 Python 包。适合于简单的 Python 项目,尤其是当你只需要管理 Python 包时。选择conda还是pip(wheel)取决于你的具体需求和项目复杂度。对于复杂的多语言项目或需要强大的环境管理功能时,conda是更好的选择;对于简单的 Python 项目,pip(wheel) 更加轻量且易于使用。
2024-08-01 17:42:27
1532
原创 运行脚本文件是bash和sh的区别
bash和shshbashshbash[[ ]]<()**shbashshbashshshshbashbashbashshshshbashshbashshbash。
2024-08-01 16:56:06
1160
原创 wget命令是干嘛的,怎么用
尽管wget是一个强大的下载工具,但在 Python 脚本中通常使用subprocess模块来调用它。如果不想依赖外部工具,可以使用requests模块来实现类似的功能。两种方法各有优劣,可以根据具体需求选择合适的方式。
2024-07-31 20:08:41
884
原创 QLoRA是干嘛的
在文档级关系抽取任务中,QLoRA(Quantized Low-Rank Adaptation)是一种用于优化和加速深度学习模型的方法,尤其在大规模语言模型的微调(fine-tuning)过程中。QLoRA通过将模型的权重进行量化和低秩分解,从而降低计算和存储的需求,同时保持模型性能。
2024-07-31 11:02:44
976
原创 深度学习网络相关代码(持续更新)
sigmoid 函数将其输入的每个元素映射到 0 和 1 之间。因此,结果数组中的每个值都被归一化到了这个范围内。这个特性使得 sigmoid 函数常用于需要输出概率值或在 0 和 1 之间进行归一化的情况。会对输入的每个元素进行操作,返回一个与输入形状相同的 tensor,其中每个元素都是对应的 sigmoid 值。库:datasets。
2024-07-28 19:04:47
371
原创 安装python包,github,本地,requirements.txt等
命令克隆仓库,或者直接从 GitHub 网站下载 ZIP 文件并解压缩。有些项目可能有特定的安装步骤。在开始安装之前,最好检查一下项目的。文件或其他文档,以确保没有遗漏任何特定的安装指引。希望这些步骤对你有帮助!如果有任何问题,请随时提问。或者,如果你希望在开发过程中进行调试,可以使用。文件,用于列出项目的依赖项。文件来管理构建配置,你可以使用。在仓库目录中通常有一个。另一种常见的方法是使用。
2024-07-27 16:39:37
940
原创 设置混合精度训练(fp16),减少 GPU 内存使用并加快训练速度
这些参数用于启用和配置混合精度训练,能够显著减少 GPU 内存使用并加快训练速度。使用这些参数时,请确保你已经安装了 NVIDIA Apex 库,并在训练代码中正确初始化 AMP。
2024-07-27 14:03:22
1434
原创 Tensor内存布局问题,view,reshape的优缺点
在你的情况下,当你对logits和label进行view操作时,可能会因为这些张量是非连续的而导致错误。使用reshape操作可以避免这种问题,因为它会自动处理内存布局问题,确保操作成功。
2024-07-27 11:27:23
497
原创 爱因斯坦求和约定torch.einsum
是中使用的爱因斯坦求和约定,它描述了多个张量之间的元素操作方式,并生成新的张量。xyzbbatch_sizehthcnum_labelsxyzproto_dim下面是einsum的形状是[x, y, z]xyproto_dimzent_head的形状是bbatch_sizehtxproto的形状是[b, c, y]bbatch_sizecnum_labelsyproto_diment_tail的形状是bbatch_sizehtzeinsum。
2024-07-26 16:44:27
469
原创 os.environ[‘CUDA_VISIBLE_DEVICES‘] = ‘2‘或者export CUDA_VISIBLE_DEVICES=2
这段代码用于设置环境变量,以指定在当前程序中可见的CUDA设备。具体来说,这段代码将CUDA设备的可见性限制为设备索引为2的GPU。此环境变量指的是python运行中的环境变量,每次更新。
2024-07-26 10:33:03
1178
原创 python类里边__init__和def forward()传递参数的不同
首先,定义一个简单的神经网络层。在这个例子中,我们定义一个只有一个线性层的神经网络。# 定义线性层# 前向传播定义层时传递的参数用于初始化层的结构和权重,而在前向传播中传递的参数是输入数据。两者的参数不同,是因为它们在神经网络训练和推理过程中承担了不同的角色。
2024-07-26 09:28:41
360
原创 python里的assert断言
如果第一个断言条件成立,程序会继续执行而不会有任何提示。如果第二个断言条件不成立,程序会引发一个。语句来进行实际的错误处理。在生产环境中,应该使用异常处理机制来进行错误处理。语句用于调试目的,帮助检查某个条件是否为真。如果条件为假(即条件不成立),语句可能会被禁用(通过使用Python的优化标志。异常,并可以选择性地提供一个错误消息。值得注意的是,在生产环境中,异常,并显示错误消息。
2024-07-25 10:48:11
208
原创 分布式训练中的参数local_rank
local_rank是一个常用于分布式训练中的参数,用于指示当前进程的本地编号。它帮助在分布式环境中区分不同的进程。通常情况下,local_rank的值为 -1 表示不进行分布式训练,值为 0 表示第一个(主)进程,其它正数表示其它辅助进程。在分布式训练中,我们常常需要确保某些操作(例如下载模型和词汇表)只由一个进程完成,以避免重复工作和资源浪费。以下是local_rank在你的代码中,local_rank不在[-1, 0]中表示所有非主进程或非单机单卡模式的进程。
2024-07-23 19:29:50
2155
原创 设置日志记录(logging)
这段代码用于设置日志记录(logging),以便在训练过程中能够记录和输出相关信息。具体包括设定日志格式、日志级别以及输出一些初始状态信息。
2024-07-23 15:40:56
568
原创 设置CUDA、GPU和分布式训练
这段代码用于设置 CUDA、GPU 和分布式训练。它会根据args的参数来确定使用的设备(CPU 或 GPU),以及是否启用分布式训练。
2024-07-23 15:19:40
641
原创 远程调试 Python 脚本
这段代码用于远程调试 Python 脚本,特别是通过 Visual Studio Code(VS Code)的远程调试功能。它会在指定的服务器 IP 和端口上等待调试器的连接。
2024-07-23 15:13:41
682
原创 随机数种子的作用
设置随机数种子(random seed)的目的是为了确保随机数生成器在每次运行时产生相同的随机数序列,从而保证实验结果的一致性。随机数种子通过初始化随机数生成器的内部状态,使得在相同的种子值下,随机数生成器每次调用时生成的序列是相同的。
2024-07-23 14:36:35
2494
原创 深度学习基础代码总结(持续更新)
enumerate 是 Python 的一个内置函数,它允许我们在遍历一个可迭代对象(例如列表)时,同时获取当前元素的索引和元素本身。
2024-07-23 13:57:00
195
原创 SSAN代码解析
函数定义功能: 加载并缓存样本数据。输入args(参数配置),tokenizer(分词器),evaluate(是否评估),predict(是否预测)。输出: 返回构建的TensorDataset对象。处理分布式训练的屏障功能: 确保只有第一个进程处理数据集,其余进程等待使用缓存。初始化处理器和加载标签映射功能: 初始化DocRED处理器并加载标签映射。根据模式加载数据集else:功能: 根据evaluate和predict标志,加载验证集、测试集或训练集的样本。将样本转换为特征。
2024-07-22 23:13:46
203
原创 DocRED数据集
train_distant.json:包含远程监督(distant supervision)数据,可能是未完全标注或自动标注的训练数据,用于增强模型的训练集。load_train_annotated_rel2num.json:包含标注过的训练集关系与数量的映射,可能用于统计训练集中关系的分布。load_train_annotated.json:包含标注过的训练集数据,是训练集中标注了实体和关系的数据。load_test_rel2num.json:包含测试集关系与数量的映射,可能用于统计测试集中关系的分布。
2024-07-22 16:02:36
726
原创 huggingface上的模型权重文件的功能详解
这个文件是tokenizer配置的一部分,定义了这些特殊token的ID及其在文本处理中的具体作用。加载模型时,tokenizer会根据这个文件正确处理这些特殊token。:包含特殊token的映射信息,这些token在自然语言处理任务中有特殊作用。这些文件包含了深度学习模型的各种配置和权重信息,适用于不同的框架和用途。这些文件共同构成了一个完整的深度学习模型的配置和权重,可以在不同的框架中加载和使用这个模型。
2024-07-19 20:02:10
2512
原创 运行sh脚本文件常见错误总结
试着运行这个改进后的脚本,看是否还会出现同样的错误。如果有更多的错误信息,请提供详细信息,以便进一步诊断。确保脚本文件没有以Windows换行符(CRLF)结尾,这可能导致问题。
2024-07-19 17:46:27
645
原创 服务器相关总结
查看conda版本查看当前conda的配置文件位置编辑配置文件,默认路径是~/condarc在channels字段添加新的镜像源,例如清华镜像显示所有的channel添加清华镜像源
2024-07-19 17:26:49
527
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人