为什么相同提示词,大模型每次返回结果不一样 | AI科普系列

既然大语言模型中的 Transformer 算法是通过预测最高概率的下一个字来生成文本,那是不是意味着一个输入应该只有一种输出?但是在现实应用中,为什么相同的输入可能会有多种不同的输出呢?

这个问题问得非常棒,乍一听好像挺矛盾的:既然 Transformer 是在预测概率最高的下一个字(Token),那是不是意味着每次都应该生成一样的结果?但你在实际用 ChatGPT、DeepSeek 的时候,明明同样的 提示词,每次生成的结果还不一样,甚至风格都变了。

这其实涉及到了两个层面的理解:

01 | 理论层面:Transformer 是概率模型,不是“唯一真理”模型

我们直觉上以为,AI 就像 Excel 函数,一样的输入就应该得到一样的输出。但大语言模型(LLM)不是这么干的。

大模型的输出过程,本质上是基于概率的词语选择过程,一句话说白了就是:

它不是挑“唯一正确的词”,而是挑“下一个可能最合适的词”。

每一个词都是在一个巨大的“概率分布”中选出来的,模型会根据前文语义、训练经验等,算出下一个词的概率,然后“掷骰子”选一个。

这个“掷骰子”的过程,就是所谓的采样(sampling)机制,导致了每次生成都有差异。

图片

Transformer 确实是在干一件事:
→ 给定一个上下文,预测下一个 Token 出现的概率分布

比如你输入:“我今天早上喝了一杯”,模型会预测:

Token

概率

咖啡

0.45

牛奶

0.32

豆浆

0.12

啤酒

0.01

……

……

然后,它根据某种策略选择一个 Token 作为“下一个字”。问题的关键就在这一步:怎么选?

02 | 实践层面:为什么“选 Token”的策略会导致不确定性

大模型的输出,不只是“概率最高”,而是“采样策略”决定的!

图片

主要有以下几种策略:

1.Greedy Search(贪婪搜索)
  • 每次都选概率最高的 Token
  • 输出确定,每次都一样
  • 缺点:句子容易无聊、单调、不自然
2.Top-k Sampling
  • 每次只考虑概率前 k 个的 Token,然后随机选一个
  • 引入了一定的不确定性,但控制范围
3.Top-p Sampling(Nucleus Sampling)
  • 找出累计概率前 p(比如 0.9)的一组 Token,再从中采样
  • 更自然灵活
4.Temperature(温度系数)调控
  • 控制“随机性”
  • 温度越高(如 1.5),结果越发散、越创新
  • 温度越低(如 0.3),越保守、越接近贪婪策略

这就像点菜:

  • Greedy 是“每次都点最热门的那道菜”
  • Top-k 是“从前 5 热门中随机选一道”
  • Top-p 是“从整体推荐中选出 90%顾客喜欢的那些,然后再选一盘”

这两个参数控制的是模型“敢不敢冒险”,范围越大,生成越灵活;范围越小,结果越稳定。

03 | 为什么要搞这么复杂?统一输出不是更好吗

因为人类语言本身就不是唯一确定的。

比如你问:

“我今天很累,下班后做什么比较放松?”

有人回答:“去健身” 有人说:“刷剧” 有人建议:“泡脚、听歌、读书”

每个答案都“合理”,而不是“唯一正确”。

AI 也一样 —— 要生成丰富多样、自然真实的对话内容,就不能每次都机械重复。
 

所以“非确定性”本身就是 LLM 的优点。

如果你是做内容的,用过 GPT 写文案写脚本,就应该知道:

有时候差异性,是灵感的源泉。

你给一个提示词,让它帮你写“XXX产品的文案”,第一次结果平平无奇,第二次突然金句频出——这其实是模型的“创意跳跃”。

对于开发者来说,如果你想用大模型做“稳定回复”类任务(比如客服、问答、知识检索),就应该:

  • 调低 Temperature,让模型更“保守”;
  • 限制 Top-p,让它别乱说话。

很多 AI 产品出问题,其实是没把这些参数调好,结果模型该“老实”时太跳脱,该“发挥”时又太怂。

04 | 总结:相同输入,为什么有不同输出

  1. Transformer 本质是生成“概率分布”,不是选唯一答案
  2. 使用了不同的采样策略(Top-k、Top-p、Temperature)
  3. 语言本身就有丰富的“多样性”和上下文理解偏差
  4. ChatGPT 等模型为了提高“互动性”、“创造性”,故意引入了“不确定性”

05|有没有办法控制生成的“随机性”

有的!我们常用的几种控制方法:

  • 设置温度参数

几乎所有调用 OpenAI、Claude、Moonshot、DeepSeek 等 API 或平台工具时,都可以手动设置 temperature,最稳妥的是设为 0(完全确定性)。

  • 多轮校验、重试生成

如果你想要稳定性,又不想放弃创意,可以:

  • 用多个不同 prompt 轮流生成;
  • 对多个生成结果进行 rerank、过滤,选择最优者。
  • 搭配工具/插件约束输出

比如你用 Coze、Dify、Langchain 等框架,可以设定约束规则、格式模板,引导输出更符合期望。

图片

最后:这其实是 AI 的价值点

如果你还觉得 “为什么 AI 总是不一样?” 不好接受,我想说:

这正是大模型最迷人的地方——它不是个死板的机器,而更像一个有点脾气、略带灵感的“创作者”。

就像同一个问题,你问一个朋友 5 次,也许得到的是 5 种角度。AI 只是用更快的速度、更大的语料库,模拟这种“语言的多样性”。

<think>首先,用户的问题是:“我想学习如何编写用于提示AI写文章的指令请问编写AI文章生成的提示词教程”。这意味着他们想学习如何创建提示词来指导AI生成文章。我需要参考提供的引用内容:-引用[1]:讨论了AIGC技术,强调高质量提示词的重要性,以及手动编写提示词的困难。这突出了自动生成提示词的需求。-引用[2]:关于使用DeepSeek提示词生成代码的示例,但用户的问题是关于文章生成的,是代码。所以,我可以提取一般原则。-引用[3]:详细描述了OpenAI提示词生成工具,特别是结构化提示词(StructuredPrompt),包括角色、功能、步骤、输出格式和示例。这非常相关,因为它直接展示了如何为AI助手(如论文阅读助手)创建提示词。-引用[4]:涉及StableDiffusion用于图像生成的提示词,但用户的问题是文本文章生成,所以太直接相关。用户的问题焦点是“编写用于提示AI写文章的指令”,所以我需要专注于文本生成提示词。我的回答结构应该清晰、逐步帮助用户解决问题。系统级指令要求:-行内数学表达式使用$...$,但由于主题是提示词编写,数学可能相关。除非涉及公式,否则避免。-独立公式使用$$...$$,但同样,可能需要。-LaTeX语法正确:在数学表达式中使用。-使用中文回答。-生成相关问题:在最后添加相关问题部分。-引用标识:在引用段落末尾添加[^1]等。回答结构:1.**介绍提示词的重要性**:基于引用[1],解释为什么好的提示词AI文章生成至关重要。2.**核心原则**:从引用[3]中提取结构化提示词的概念:角色、功能、步骤、输出格式、示例。3.**步骤指南**:提供一个教程式的逐步方法,如何编写提示词。4.**示例**:给出一个完整的提示词示例,用于文章生成。5.**最佳实践**:分享一些技巧,如清晰描述、提供上下文等。6.**相关问题**:在最后添加相关的问题列表。确保回答真实可靠:基于引用内容,但添加自己的知识。引用内容是用户真正的需求,只是参考,所以我应该以用户问题为中心。最终输出格式:-回答主体:清晰、分段。-相关问题:以“§§相关问题§§”开头,然后列出问题。现在,脑力storm关键点:-**为什么重要**:引用[1]说“AIGC的应用离开高质量的提示词”,手动编写耗时费力。-**结构**:引用[3]描述结构化提示词:角色、功能、步骤、输出格式、示例。-角色:AI应该扮演什么角色,例如文章写手。-功能:具体任务,如生成博客文章、新闻稿等。-步骤:AI需要遵循的步骤,例如:1.理解主题,2.大纲,3.写草稿,4.润色。-输出格式:指定输出结构,如标题、段落、字数。-示例:提供输入输出示例。-**一般技巧**:从引用[4]中,描述需要什么,如“清楚地描述我们希望人工智能模型创建什么”。-**示例提示词**:创建一个用于文章生成的提示词。-例如:用户想生成一篇关于气候变化的影响的文章。-提示词:"你是一个专业的文章写手。生成一篇500字的文章,主题是'气候变化的影响'。文章应包括:引言介绍主题、主体讨论三个主要影响(如环境、经济、健康),每个影响有例子,结尾呼吁行动。使用正式但易懂的语言。"逐步教程:1.**定义AI的角色**:明确AI在任务中的身份。2.**指定任务和功能**:详细描述要生成的内容。3.**列出步骤**:如果复杂,分解步骤。4.**设置输出格式**:确保输出一致。5.**提供上下文和约束**:如主题、字数、风格。6.**添加示例**:可选,但有助于AI理解。在回答中,自然地引用:例如,当提到结构化提示词时,引用引用[3]。最后,相关问题:1.如何优化提示词以提高文章质量?2.AI文章生成有哪些常见错误?3.如何评估AI生成文章的质量?4.有哪些工具可以自动生成提示词?确保语言中文。</think>### 编写AI文章生成提示词教程 编写高质量的提示词(prompt)是指导AI生成优质文章的关键。高质量的提示词能确保AI理解任务、生成内容准确、结构清晰,从而节省手动编写的时间和精力。根据研究,AIGC技术的应用高度依赖于提示词的质量,手动编写提示词往往耗时费力,因此掌握结构化提示词技巧至关重要[^1]。本教程将逐步引导您学习如何编写有效的AI文章生成提示词,基于最佳实践和结构化方法。 #### 步骤1: 定义AI的角色和功能 首先,明确AI在任务中扮演的角色,这有助于设定上下文。例如,指定AI为“专业文章写手”“科普作者”或“新闻编辑”。同时,清晰地描述功能,包括文章类型、主题和核心要求。 - **角色**: 例如,“你是一个经验丰富的科技博客作者”。 - **功能**: 例如,“生成一篇800字左右的文章,主题为‘人工智能在医疗领域的应用’,要求涵盖技术优势、挑战和未来趋势”。 结构化提示词的核心在于角色和功能的定义,这能引导AI聚焦核心任务[^3]。 #### 步骤2: 分解任务步骤 将文章生成过程分解为可操作的步骤,确保AI逻辑清晰。常见的步骤包括: 1. **理解主题**: AI应分析输入信息(如关键词或背景)。 2. **大纲规划**: 生成文章结构,例如引言、主体(分点论述)、结论。 3. **内容生成**: 基于大纲撰写内容,融入事实或例子。 4. **润色优化**: 检查语言风格、连贯性和错误。 在提示词中明确步骤,例如:“第一步,简要总结主题;第二步,列出三个主要论点并举例;第三步,生成完整文章;第四步,确保语言正式且流畅。”这借鉴了结构化提示词的设计原则,能提升输出一致性[^3]。 #### 步骤3: 指定输出格式 约束输出格式以避免随机性。包括: - **字数限制**: 如“500-700字”。 - **结构要求**: 如“文章必须包括标题、引言段落、三个主体段落(每段聚焦一个子主题)、结论段落”。 - **风格指南**: 如“使用学术性语言,避免口语化”或“融入数据支持论点”。 输出格式标准化是结构化提示词的关键部分,确保每次生成结果易于使用[^3]。 #### 步骤4: 提供上下文和示例 添加背景信息或示例,帮助AI更好地理解意图。上下文可以是主题细节、目标受众或参考资料;示例展示输入输出对,指导AI模仿。 - **上下文**: 例如,“本文面向大学生读者,需引用最新研究数据”。 - **示例**: - 输入: “生成一篇关于‘可再生能源发展’的文章”。 - 输出: “标题: 可再生能源的崛起与挑战;引言: 介绍全球能源转型...”。 示例能显著提升AI的生成质量,正如在提示词工具中所示,样例指导模型输入输出[^3]。 #### 完整示例提示词 以下是一个基于以上步骤的完整提示词示例,用于生成一篇科技文章: ``` 你是一个科技专栏作者(角色)。生成一篇600字左右的文章,主题为“5G技术对社会的影响”(功能)。请遵循步骤:1. 分析主题,确保涵盖经济、生活和文化方面;2. 大纲:引言(介绍5G)、主体(分三个段落,每段讨论一个影响)、结论(总结利弊);3. 输出时使用正式语言,融入真实数据(输出格式)。上下文:文章面向普通读者,避免技术术语。示例:输入“生成AI教育应用文章”,输出应包含标题和清晰段落。 ``` 测试此提示词AI工具(如ChatGPT或Claude)中,您将获得结构化的文章草稿。 #### 最佳实践和技巧 - **清晰描述**: 像图像生成提示词一样,“清楚地描述希望AI创建什么”,避免模糊词汇[^4]。 - **迭代优化**: 初次生成后,根据输出调整提示词(如添加更多约束)。 - **工具辅助**: 使用提示词生成工具(如OpenAI的模板)自动化部分工作[^3]。 - **常见错误避免**: 避免过于宽泛(如“写一篇好文章”)或缺少约束,这可能导致AI偏离主题。 通过本教程,您能系统掌握提示词编写方法。实践中,多测试提示词,结合AI反馈优化。高质量提示词仅能提升文章质量,还能解锁AIGC的更多潜力[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值