想象这样一个场景:你正在用ChatGPT帮助分析一份50页的市场调研报告。开始时,AI的回答精准到位,但随着对话深入,你发现它开始"健忘"——忘记了报告中的关键数据,甚至开始给出与前面矛盾的建议。这不是AI模型本身的问题,而是遇到了上下文管理的挑战。
这个看似简单的问题,实际上揭示了现代AI应用中一个核心技术难题:如何让AI在有限的"记忆空间"中,始终关注最重要的信息?这就是上下文工程要解决的根本问题。
一、基本概念和相关技术
1、 什么是上下文工程(Context Engineering)?
上下文工程是一种通过精心设计输入信息来优化大语言模型性能的技术。简单说,就是给AI提供"恰到好处"的背景信息,让它能准确理解任务并给出高质量的回答。它是提示词工程(Prompt Engineering)的进化和扩展,专注于如何更好地利用模型的上下文窗口。
就像我们向他人求助解决问题时,你会怎么做?你不会突然抛出一个问题,而是会先解释背景情况、说明你的需求、甚至举几个例子。上下文工程就是这样一门技术——它教会我们如何与AI"对话",让AI更好地理解我们的意图。
2、为什么上下文工程(Context Engineering)如此重要?
回答这个问题前,我们先理解问题的本质:AI的"记忆"是如何工作的?
大语言模型的"记忆"本质上是一个固定大小的文本窗口。就像人类的工作记忆一样,这个窗口有容量限制。当新信息进入时,旧信息就可能被"挤出去"。
[系统提示] + [历史对话] + [当前输入] = 总上下文
当总上下文超出模型的上下文窗口时,问题就出现了。
让我们看一个具体例子。假设你要让AI帮你写一份技术方案:
第1轮对话:
你:帮我写一个电商网站的技术架构方案
AI:好的,我来为你设计一个现代化的电商架构...
第10轮对话后:
你:前面提到的数据库方案具体怎么实现?
AI:抱歉,能否重新描述一下你的项目需求?
AI"忘记"了前面的讨论,这就是上下文管理失效的典型表现。
这就是为什么需要上下文工程,因为它提出了一个系统性的解决思路:不是让AI记住所有信息,而是让它在每个时刻都能获得最重要的信息,也就是上下文窗口的概念。
## 【会话历史摘要】
第1-3轮:确定微服务架构和技术栈选型
第4-6轮:讨论数据库架构,决定主从+分库分表
第7-9轮:设计缓存策略和消息队列方案
第10轮:当前讨论分库分表具体实现
## 【关键决策记录】
- 数据库:MySQL 8.0 + MyCAT分库分表中间件
- 分片策略:用户维度分库,订单按时间分表
- 缓存:Redis Cluster,商品缓存+用户会话缓存
- 队列:RocketMQ,订单、库存、支付异步处理
## 【待解决问题清单】
1. ✅ 整体架构设计
2. ✅ 数据库选型
3. 🔄 分库分表实现细节(当前讨论)
4. ⏳ 性能监控方案
5. ⏳ 灰度发布策略
3、 上下文工程(Context Engineering)相关技术有哪些?
通过刚才的介绍,上下文工程的基础是上下文窗口的概念,即每个AI模型都有一个"记忆容量"限制,就像人的短期记忆一样,只能同时处理有限的信息。这里涉及几个关键技术。
(1)检索增强生成(RAG)
让AI能够从庞大的知识库中"查找"相关信息,就像给AI配备了一个智能图书馆。当你问一个专业问题时,系统会先检索相关资料,然后将这些信息连同你的问题一起提供给AI,大大提升了回答的准确性和深度。
(2)上下文学习(In-Context Learning)
通过在输入中提供示例,AI能够快速"学会"新的任务模式。比如,如果你想让AI写出特定风格的邮件,你只需要提供几个示例,AI就能模仿这种风格处理新的邮件需求,无需重新训练模型。
(3)动态上下文管理
解决了长对话中的信息管理问题。想象一下客服场景,随着对话的进行,重要信息可能被淹没在冗长的对话历史中。智能的上下文管理系统会识别并保留关键信息,丢弃不相关的内容,确保AI始终能关注到最重要的信息。
核心策略:滑动窗口 + 关键信息保留,这个与计算机视觉中大场景下识别小地物异曲同工,通过滑动窗口来提取特征。
二、工作原理与应用场景
1 上下文工程(Context Engineering)工作原理是什么?
先看一个例子,当我们问AI:“我的订单什么时候到?”
没有上下文工程:AI仅能看到“我的订单什么时候到?”这一句话,回答:“我不知道你的订单信息,请提供订单号。”
有了上下文工程:AI能看到完整的背景信息,包括提问者身份(张先生)、购买时间(昨天)、购买物品(手机)等, 给出精准回答:“张先生您好,您昨天购买的手机订单正在配送中,预计今天下午3点送达。”
这背后发生了什么?
1. 语义搜索阶段当你说"我的订单",系统会把这句话转换成数字向量(Vector Embeddings),然后在用户数据库中搜索语义相似的内容。这就像给每段文字都贴上"语义标签",让系统能理解你真正想问什么。
2. 信息检索与匹配系统通过语义相似度计算,自动找到相关信息:
(1)识别出你是张三(通过登录信息)
(2)找到你最近的订单记录
(3)匹配到物流信息
(4)检索配送时间预估
3. 上下文构建(RAG框架)这是关键步骤,系统把检索到的信息组装成完整上下文:
用户:张三,手机139xxxx1234
最近订单:2024年7月7日购买iPhone 15
订单状态:已发货,快递单号SF1234567890
预计送达:今天下午3点
用户问题:我的订单什么时候到?
4. 注意力机制处理AI模型接收到这个丰富的上下文后,通过注意力机制自动关注最相关的部分(订单状态、配送时间),然后生成准确回答。
通过上述工作流程,上下文工程将原本AI只能看到"我的订单什么时候到?"这11个字,转化为AI能看到完整的用户档案、订单历史、物流状态等几百个字的背景信息。就像给AI配了一个全能助手,随时提供相关资料。
这就是上下文工程的威力——让每次对话都变成"知情对话"而不是"盲目问答"。
2、 上下文工程(Context Engineering)应用场景有哪些?
1. 代码生成
在代码生成场景中,开发者面临的最大挑战是 简单的需求描述往往无法让AI生成理想的代码。传统方式下,你可能只是告诉AI"帮我写一个登录功能",结果得到的代码虽然功能正确,但与项目风格格格不入。
而通过上下文工程,我们可以为AI提供项目的技术栈信息、团队的代码风格规范、相关的业务逻辑说明,甚至现有代码的关键片段作为参考。这样AI生成的代码不仅功能正确,还能完美融入项目整体架构,保持代码风格的一致性。
2. 教育辅导
在教育领域,上下文工程帮助打造真正个性化的学习体验。系统会智能分析学生的学习历史、当前知识水平和学习目标,然后动态构建个性化的教学上下文。
比如对于一个数学基础薄弱的学生,AI会选择更基础的知识点、提供循序渐进的学习方法建议,并加入鼓励性的话语。而对于学霸型学生,AI则会推荐更有挑战性的内容和高效的学习策略。这样的AI导师不仅能准确回答知识问题,更能像真正的老师一样,根据每个学生的特点提供量身定制的学习指导。
这种个性化程度是传统在线教育很难达到的,真正实现了"因材施教"的教育理念。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。