系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI,
点击star加星不要吝啬,星越多笔者越努力。
3.1 均方差函数
MSE - Mean Square Error。
该函数就是最直观的一个损失函数了,计算预测值和真实值之间的欧式距离。预测值和真实值越接近,两者的均方差就越小。
均方差函数常用于线性回归(linear regression),即函数拟合(function fitting)。公式如下:
\[ loss = {1 \over 2}(z-y)^2 \tag{单样本} \]
\[ J=\frac{1}{2m} \sum_{i=1}^m (z_i-y_i)^2 \tag{多样本} \]
3.1.1 工作原理
要想得到预测值a与真实值y的差距,最朴素的想法就是用\(Error=a_i-y_i\)。
对于单个样本来说,这样做没问题,但是多个样本累计时,\(a_i-y_i\)有可能有正有负,误差求和时就会导致相互抵消,从而失去价值。所以有了绝对值差的想法,即\(Error=|a_i-y_i|\)。这看上去很简单,并且也很理想,那为什么还要引入均方差损失函数呢?两种损失函数的比较如表3-1所示。
表3-1 绝对值损失函数与均方差损失函数的比较
样本标签值 | 样本预测值 | 绝对值损失函数 |
---|