[ch03-01] 均方差损失函数

本文详细介绍了均方差损失函数在机器学习中的应用,特别是在线性回归中的作用。通过工作原理、实际案例和可视化手段,阐述了均方差损失函数如何衡量预测值与真实值的差距,并在优化过程中指导模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

3.1 均方差函数

MSE - Mean Square Error。

该函数就是最直观的一个损失函数了,计算预测值和真实值之间的欧式距离。预测值和真实值越接近,两者的均方差就越小。

均方差函数常用于线性回归(linear regression),即函数拟合(function fitting)。公式如下:

\[ loss = {1 \over 2}(z-y)^2 \tag{单样本} \]

\[ J=\frac{1}{2m} \sum_{i=1}^m (z_i-y_i)^2 \tag{多样本} \]

3.1.1 工作原理

要想得到预测值a与真实值y的差距,最朴素的想法就是用\(Error=a_i-y_i\)

对于单个样本来说,这样做没问题,但是多个样本累计时,\(a_i-y_i\)有可能有正有负,误差求和时就会导致相互抵消,从而失去价值。所以有了绝对值差的想法,即\(Error=|a_i-y_i|\)。这看上去很简单,并且也很理想,那为什么还要引入均方差损失函数呢?两种损失函数的比较如表3-1所示。

表3-1 绝对值损失函数与均方差损失函数的比较

样本标签值 样本预测值 绝对值损失函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值