121. 买卖股票的最佳时机给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 105
0 <= prices[i] <= 104
来源:力扣(LeetCode)
DP (dynamic programming)
DP的思路: 利用原问题与子问题的关系,将其变成 大问题的解 = 小问题的解的函数, 从而将问题变成size的扩展即可,当size到达最大后,原问题解决了
DP的keypoint
转移方程(大问题与小问题的关系)
1)定义状态:定义一个状态,例如f(i) = 到a[i]为止到最小值
2)设计转移方程:根据如上状态方程定义,则有 f(i+1) = min(f(i), a[i+1])
tip:
转移方程的设计完全依赖于状态的定义,并不是什么样的状态定义,都能有状态转移方程,因此,状态定义决定了该DP方法能否实现
初始条件的设置: Dp本质还是迭代,总要有一个迭代的初值。
特殊处理小size的问题:有些情况,由于size太小,没法带入转移方程中。
根据该问题,依次回答上述问题:
大问题与小问题的关系
1)状态定义:我们定义max_profit为第i天的最大收益
2)状态转移方程:
第i天的最大收益和第i-1天的最大收益之间的关系:
i) 最大收益不是第i天抛出的, ---最大收益和第i天的价格无关
ii)最大收益是在第i-1天前某天买入的,并在第i天抛出的, ---与第i天的价格有关
因此第i天的最大收益等于:第i天抛出所造成的最大收益 和 第i-1天之前的最大收益 中的最大值
即:
前i天的最大收益 = max{前i-1天的最大收益,第i天的价格-前i-1天中的最小价格}
其中:
前i-1天中的最小价格需时时更新并记录
初始条件:
min 和 max_profit
min可以等于第一天的price
max_profit可以等于0, 因为最大收益的最小值就是0, 用人话叫,最低也不能赔了
小于最小问题的特殊情况: 当list的长度为0 和 1 时, 没有办法带入转移公式中,需要特殊处理。
这题目解法可以用贪心也可以用dp都一样代码如下
def maxProfit(prices):
if len(prices) <= 1:
return 0
min_input = prices[0]
max_profit = 0
for p in prices[1:]:
min_input = min(p, min_input)
max_profit = max(max_profit, p - min_input)
return max_profit
不懂留言!