LeedCode——贪心专区

本文介绍如何使用动态规划解决股票买卖问题,通过定义状态max_profit和转移方程,计算在给定股票价格数组中,从最低点买入并在最高点卖出所能获得的最大利润。实例演示和关键代码实现帮助理解算法过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121. 买卖股票的最佳时机给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

1 <= prices.length <= 105
0 <= prices[i] <= 104

来源:力扣(LeetCode)
DP (dynamic programming)

DP的思路: 利用原问题与子问题的关系,将其变成 大问题的解 = 小问题的解的函数, 从而将问题变成size的扩展即可,当size到达最大后,原问题解决了

DP的keypoint

转移方程(大问题与小问题的关系)

 1)定义状态:定义一个状态,例如f(i) = 到a[i]为止到最小值
 2)设计转移方程:根据如上状态方程定义,则有 f(i+1) = min(f(i), a[i+1])
 
 tip:
 转移方程的设计完全依赖于状态的定义,并不是什么样的状态定义,都能有状态转移方程,因此,状态定义决定了该DP方法能否实现

初始条件的设置: Dp本质还是迭代,总要有一个迭代的初值。

特殊处理小size的问题:有些情况,由于size太小,没法带入转移方程中。

根据该问题,依次回答上述问题:

大问题与小问题的关系

 1)状态定义:我们定义max_profit为第i天的最大收益
 2)状态转移方程:
 第i天的最大收益和第i-1天的最大收益之间的关系:
     i) 最大收益不是第i天抛出的,                        ---最大收益和第i天的价格无关
     ii)最大收益是在第i-1天前某天买入的,并在第i天抛出的,  ---与第i天的价格有关

 因此第i天的最大收益等于:第i天抛出所造成的最大收益 和 第i-1天之前的最大收益 中的最大值
 即:
 前i天的最大收益 = max{前i-1天的最大收益,第i天的价格-前i-1天中的最小价格}
 其中:
 前i-1天中的最小价格需时时更新并记录

初始条件:

 min 和 max_profit
 min可以等于第一天的price
 max_profit可以等于0, 因为最大收益的最小值就是0, 用人话叫,最低也不能赔了

小于最小问题的特殊情况: 当list的长度为0 和 1 时, 没有办法带入转移公式中,需要特殊处理。

这题目解法可以用贪心也可以用dp都一样代码如下

def maxProfit(prices):
    if len(prices) <= 1:
        return 0

    min_input = prices[0]
    max_profit = 0
    for p in prices[1:]:
        min_input = min(p, min_input)
        max_profit = max(max_profit, p - min_input)

    return max_profit

不懂留言!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值