数据可视化与单元测试实践
数据可视化工具
在数据可视化领域,有多种工具可供选择,它们各有特点,能满足不同场景的需求。
ggplot2 可视化
在数据中添加新列并运用不同的美学选择,可生成截然不同的图表。以下是示例代码:
df_wtVsMpg['cyl'] = df_cars['cyl']
p2 = ggplot2.ggplot(df_wtVsMpg)
p2 = p2 + ggplot2.aes_string(x="mpg", fill="factor(cyl)")
p2 = p2 + ggplot2.geom_histogram()
p2.plot()
通过上述代码,能直观看到不同美学选择对图表的影响,学习使用 ggplot2 制作优质图表,关键在于掌握可分层添加的视觉元素。
Python - nvd3 可视化
Python - nvd3 是 NVD3 库的包装器,而 NVD3 则构建于 D3.js 库之上。其官网表明,该项目旨在为 D3.js 构建可复用的图表和图表组件,同时保留 D3.js 的强大功能。
- 安装与验证 :使用
pip install python - nvd3
命令进行安装,安装后可通过以下代码验证其可用性:
import nvd3
print(nvd3.__version__)