寿司师
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
36、Alvis:并发系统建模语言的全面解析
本文全面解析了Alvis这一并发系统建模语言,涵盖了边界端口规范、系统层的功能与分类、基于规则的系统的实现与验证方法、Alvis模型示例及其状态分析等内容。此外,还深入探讨了主动代理模式转换、通信机制、模型状态验证与优化策略,并结合智能物流机器人案例展示了Alvis的实际应用价值。原创 2025-07-15 16:25:58 · 24 阅读 · 0 评论 -
35、Alvis:并发系统建模语言的全面解析
本文全面解析了Alvis这一专门用于并发系统建模的语言。Alvis不仅提供图形化和文本化的建模方式,还支持将基于规则的系统集成到模型中,并使用LTS图进行系统验证。文章详细介绍了Alvis与其他语言(如E-LOTOS、SysML、Ada、SCADE)的异同、通信图结构、语言语句、规则系统编码以及状态转换表示等内容,展示了其在分布式和嵌入式实时系统建模中的强大功能与优势。原创 2025-07-14 12:03:15 · 15 阅读 · 0 评论 -
34、复杂系统可靠性分析与建模语言介绍
本文介绍了复杂系统可靠性分析与建模的关键技术和工具。重点探讨了虚拟加速寿命测试方法,包括系统可靠性计算、软件工具的输入输出以及双电源系统的测试示例。此外,还介绍了Alvis这一专门用于并发系统建模的语言,涵盖其结构、特点及应用案例。最后,展望了相关技术在未来的发展趋势,如多物理场耦合模拟和新兴领域的应用。原创 2025-07-13 10:36:18 · 55 阅读 · 0 评论 -
33、复杂系统的虚拟加速寿命测试
本文探讨了复杂系统的虚拟加速寿命测试方法,重点介绍了如何利用邻接数组和链接数组表示复杂可靠性网络的拓扑结构,并详细描述了组件故障后链接数组的更新机制。文章提供了路径存在性判断算法以及用于确定复杂系统加速失效时间的蒙特卡罗模拟方法。通过实际应用案例和性能分析,展示了该方法在工程系统可靠性评估中的重要价值。原创 2025-07-12 14:17:01 · 17 阅读 · 0 评论 -
32、复杂系统的虚拟加速寿命测试与可靠性分析
本文探讨了复杂系统的虚拟加速寿命测试与可靠性分析方法。通过实验数据分析不同参数对可靠性的评估影响,介绍了利用加速应力(如温度、湿度)推断组件和系统寿命的模型,包括Weibull分布和负指数分布等失效时间模型,以及Arrhenius、逆幂律(IPL)和Eyring等应力-寿命关系。文章重点提出了一种基于蒙特卡罗模拟和多终点路径查找算法的虚拟加速寿命测试方法,能够高效评估复杂拓扑结构系统的可靠性,克服传统方法在处理大型系统时的局限性。最后,总结了该方法的优势,并展望了未来研究的方向。原创 2025-07-11 12:21:00 · 18 阅读 · 0 评论 -
31、基于MapReduce范式的分布式进化算法在测试压缩中的应用
本文探讨了基于MapReduce范式的分布式进化算法在测试压缩中的应用。测试压缩分为静态压缩和动态压缩,其核心目标是通过缩短测试序列长度来减少内存需求和测试时间。文章详细介绍了将遗传算法GATC与Hadoop MapReduce框架结合的MRPEA_DCP算法流程及其伪代码实现,并对贪心算法GRBT和GRNV进行了比较分析。实验结果表明,MRPEA在大多数情况下优于传统贪心方法,特别是在大规模数据处理中表现出色。此外,该研究还探索了算法在VLSI测试和生物信息学DNA序列压缩等实际场景中的潜在应用。原创 2025-07-10 16:39:23 · 32 阅读 · 0 评论 -
30、动态网络的博弈论方法与数据压缩问题研究
本文研究了动态网络中的博弈论方法以及数据压缩问题。首先,基于博弈论分析了市场导向覆盖网络中不同拓扑结构(无连接、全连接、d-正则、中心辐射)达到纳什均衡的条件,并总结了相关工作的研究现状。其次,提出了一种基于MapReduce的分布式进化算法(MRPEA)来解决数据压缩问题,通过实验验证其在大规模数据处理中的高效性和优越性能。最后,对未来的研究方向进行了展望,包括模型扩展、算法优化和实际应用拓展等方面。原创 2025-07-09 15:31:24 · 12 阅读 · 0 评论 -
29、动态网络的博弈论方法:网络形成游戏的建模、模拟与分析
本文探讨了基于博弈论的动态网络形成过程,重点研究了平台在自私行为下如何通过添加或删除连接来最大化自身效用。文章构建了网络形成游戏的数学模型,并设计了模拟算法对不同场景下的网络拓扑演化进行了实验分析。结果显示,在不同连接成本和资源价格条件下,网络可能趋于无连接拓扑、完全连接拓扑或枢纽拓扑等稳定状态。理论分析进一步揭示了这些拓扑结构达到纳什均衡的条件。研究成果为理解复杂网络的形成机制以及优化网络结构提供了理论支持和实践指导。原创 2025-07-08 11:35:17 · 19 阅读 · 0 评论 -
28、嵌入式应用重配置与市场导向网络的博弈论方法
本博文探讨了两个主要议题:一是嵌入式应用中的代理放置与重配置(APR)问题,比较了贪婪算法和PRA算法的性能,结果显示PRA在多种场景下更接近最优解,并具备更高的效率;二是市场导向资源提供网络中动态网络形成的博弈论方法,通过非合作博弈模型分析平台和代理之间的交互行为,提出了稳态网络拓扑的模拟方法及纳什均衡分析。博文还展望了未来研究方向,包括分布式算法设计、考虑更多实际因素以及实验验证等。原创 2025-07-07 09:26:23 · 13 阅读 · 0 评论 -
27、嵌入式应用重配置相关问题与算法解析
本文探讨了嵌入式应用系统中的代理放置重配置(APR)问题,重点分析了如何优化代理的分布以降低网络负载和迁移成本。通过构建系统模型并引入资源约束、通信负载以及迁移代价等要素,将该问题转化为一个复杂的优化问题。文章详细介绍了基于图着色思想的代理交换算法(AXA)及其在两节点场景下的应用,并进一步扩展到多节点情况,提出成对重配置算法(PRA)进行局部优化迭代。同时讨论了外部通信负载的纳入方式以及相关算法的调整策略。最后,从理论与实践角度分析了算法性能及潜在应用场景,为后续研究和实际部署提供了重要参考。原创 2025-07-06 11:48:33 · 9 阅读 · 0 评论 -
26、复杂决策系统中的进化与经济智能体及嵌入式应用放置问题
本文探讨了复杂决策系统中的智能体方法及其在动态环境中的应用,重点分析了市场导向和进化智能体方法的机制与优势。同时,研究了智能传感与执行环境中的嵌入式应用放置问题,提出了一种新的重新配置算法以优化通信流量和提升能源效率。文章还展望了未来在方法融合、算法优化及实际场景验证方面的研究方向,为复杂系统决策和嵌入式系统优化提供了新思路。原创 2025-07-05 16:50:05 · 12 阅读 · 0 评论 -
25、复杂决策系统中的进化与经济智能体应用解析
本文探讨了进化与经济智能体在复杂决策系统中的应用,涵盖混合决策系统、供应链结构优化和 p - 中位数问题优化等多个领域。通过将经济模型引入智能体决策机制,构建了去中心化的分布式解决方案,并结合实际案例(如医院治疗调度、物流供应链调整)展示了其在动态环境下的适应能力。文章分析了变异率、搜索率等关键参数对系统性能的影响,并提出了基于市场机制的协调策略,以提升资源利用效率。实验结果验证了该方法在不同场景下的有效性,为未来进一步拓展此类技术的应用提供了理论支持和实践参考。原创 2025-07-04 10:39:57 · 12 阅读 · 0 评论 -
24、复杂决策系统中的进化与经济智能体
本文探讨了复杂自适应系统(CAS)在决策系统中的应用,重点介绍了多智能体系统(MAS)、经济和市场模型以及进化计算方法的结合。通过软件智能体的自主性、反应性和社交能力,系统能够在动态环境中实现资源的有效分配和问题的分布式优化。文章还分析了系统的灵活性与适应性、自组织与进化能力,并讨论了其在供应链管理、电力市场和交通流量管理等领域的应用场景及未来发展方向。原创 2025-07-03 16:27:10 · 11 阅读 · 0 评论 -
23、空间迭代囚徒困境与复杂决策系统中的智能体行为研究
本文研究了空间迭代囚徒困境(Spatial IPD)中智能体的联盟行为及其在不同囚徒困境矩阵和邻居数量下的决策模式,同时探讨了复杂决策系统中环境与智能体的关系。通过实验分析表明,矩阵设置和邻居数量显著影响智能体的行为选择。此外,文章讨论了市场协调与进化计算在复杂决策系统中的应用,并通过分布式能源系统的案例展示了多智能体系统的适应性和协调能力。研究为理解智能体行为、提升系统灵活性和适应性提供了理论支持和实践参考。原创 2025-07-02 14:08:03 · 12 阅读 · 0 评论 -
22、空间迭代囚徒困境中的合作涌现探索
本文探讨了在基于空间迭代囚徒困境(IPD)的多智能体系统中,联盟形成和强化学习技术如何促进合作的涌现与维持。通过设计不同的游戏场景,并采用Q-学习(QL)和学习自动机(LA)算法进行实验分析,研究发现允许联盟的形成能够显著提升合作比例,而强化学习算法则帮助智能体更好地适应环境并选择最优策略。研究表明,在协调矩阵和经典IPD矩阵场景下,联盟机制和学习算法对合作行为的演化具有重要影响,为理解社会、经济和生物等领域中的合作现象提供了新的视角。原创 2025-07-01 09:43:54 · 13 阅读 · 0 评论 -
21、分层多智能体系统在异构数据集成及博弈论模拟中的应用
本文探讨了分层多智能体系统在两个关键领域的应用:异构数据集成和博弈论模拟。在异构数据集成方面,介绍了智能体的行动、系统资源以及实际用例(如科学家个人资料的构建),展示了系统的灵活性与强大整合能力。在博弈论领域,重点分析了空间囚徒困境模型,通过计算机模拟研究合作与背叛策略在群体中的动态演化。文章提出了一个基于智能体的框架,支持用户驱动、半自动和完全自主的操作模式,并展望了其在多个复杂问题中的潜在应用价值。原创 2025-06-30 15:05:36 · 12 阅读 · 0 评论 -
20、分层多智能体系统在异构数据集成中的应用
本文探讨了分层多智能体系统在异构数据集成和处理中的应用。文章首先介绍了智能体平台的基本单元、异构信息集成的方法以及数据和服务集成的新趋势。随后,详细阐述了数据转换的基本模型,包括任务定义、组合规则及工作流构建。接着深入分析了系统的用户交互策略、智能体组件功能、基于智能体的工作流模型、系统结构、对象与数据类型以及智能体的不同角色。文章进一步展示了智能体角色如何协同工作并提出优化策略。最后,列举了该系统在医疗、金融、科研等领域的应用场景,并展望了其未来发展趋势。原创 2025-06-29 13:39:07 · 16 阅读 · 0 评论 -
19、大规模分布式社区的数据共享与异构数据集成
本文探讨了在大规模分布式社区中实现高效数据共享和异构数据集成的方法。首先,提出了一种优化的查询评估算法,结合缓存机制显著减少了查询流量并提高效率。其次,通过语义聚类拓扑结构,有效缩小了搜索空间,并验证了其在查询召回率方面的优势。实验表明,基于包含关系的缓存在查询分布偏斜的情况下效果更加显著。此外,介绍了一个分层多智能体框架AgE,用于处理分布式、异构数据,支持工作流的动态组合与执行。最后,以科学家个人资料搜索系统为例,展示了该框架的实际应用及其优势,并提出了未来的研究方向,包括简化语义相似度测量、使用真实数原创 2025-06-28 12:39:54 · 13 阅读 · 0 评论 -
18、大规模分布式社区中的高效数据共享
本文介绍了一种基于本体的大规模分布式社区高效数据共享框架。通过引入本体层和概念层,系统实现了更灵活的语义级对等映射,并利用语义相似度测量、自聚类机制以及查询评估策略,提高了数据共享的效率和准确性。此外,基于语义的查询转发和包含缓存机制进一步降低了网络开销,提升了响应速度。该框架在动态环境中具有良好的适应性和可扩展性,为未来大规模分布式数据管理提供了有效支持。原创 2025-06-27 09:22:46 · 12 阅读 · 0 评论 -
17、垂直整合供应链高级规划与大规模分布式社区高效数据共享
本文探讨了垂直整合供应链高级规划与大规模分布式社区高效数据共享两大主题。在供应链规划部分,重点分析了矿业开采中的复杂约束条件,包括矿块依赖、设备容量及安全限制,并介绍了基于元启发式算法的决策支持系统及其功能,如五年计划生成、权衡分析和手动调整。对于数据共享问题,文章提出了一种基于本体的框架,通过添加语义层和优化查询路由机制来提升大规模分布式环境下的数据互操作性与查询效率。最后展望了人工智能、机器学习和区块链等技术在这些领域的发展潜力。原创 2025-06-26 11:22:40 · 12 阅读 · 0 评论 -
16、垂直整合供应链中的高级规划:葡萄酒与矿业案例
本文探讨了垂直整合供应链中的高级规划方法,以葡萄酒供应链和矿业规划为案例,详细分析了各自的优化策略、挑战及解决方案。在葡萄酒供应链中,通过酒窖管理、装瓶环节的优化以及环境因素的考量,实现了生产效率提升、成本降低和可持续发展。而在矿业领域,聚焦于中期规划与调度问题,通过设备调度、块体挖掘顺序和库存管理的优化,有效应对了复杂约束和不确定性因素。文章还总结了这两个行业对其他领域的启示,如采用先进的优化算法、重视数据驱动决策和考虑环境因素等,为各行业提供了可借鉴的经验。原创 2025-06-25 11:45:59 · 13 阅读 · 0 评论 -
15、供应链管理与葡萄酒供应链优化解析
本文探讨了供应链管理的基本概念及其在葡萄酒供应链优化中的应用。从供应链管理的发展历程到计算智能方法的运用,文章详细分析了葡萄酒供应链各个环节的挑战和优化策略,包括葡萄成熟度预测、年份采购规划、压榨调度、酒罐区优化、装瓶线排序及需求预测等关键环节。通过基于计算智能的软件应用程序,酒庄可以实现对整个供应链的端到端优化,从而提高生产效率、降低成本并增强市场竞争力。原创 2025-06-24 12:59:34 · 16 阅读 · 0 评论 -
14、生物启发方法、博弈论与供应链高级规划
本文探讨了生物启发方法与博弈论在多目标优化问题中的应用,重点介绍了混合博弈算法和免疫博弈论多目标算法(IMGAMO),并通过数值测试验证其有效性。同时,文章分析了垂直整合供应链中的高级规划挑战,结合葡萄酒行业和采矿业的实际案例,展示了如何利用相关算法和技术实现供应链的高效运作与优化。原创 2025-06-23 09:13:54 · 10 阅读 · 0 评论 -
13、多目标优化方法及相关理论解析
本博客详细解析了多目标优化方法及相关理论,涵盖无偏好、后验、先验和交互式等决策方法,并深入探讨了进化算法(如MOGA、NSGA、SPEA)、人工免疫系统(如MISA、MOIA)以及博弈论在多目标优化中的应用。同时介绍了混合进化-博弈算法如何结合纳什均衡与进化策略以提升优化效率。这些方法为解决复杂的多目标优化问题提供了丰富的工具和思路。原创 2025-06-22 12:59:04 · 20 阅读 · 0 评论 -
12、并行进化算法与多准则决策方法研究
本文探讨了并行进化算法在能源感知调度中的应用,以及生物启发方法和博弈论在多准则决策过程中的结合。通过实验评估混合方法、岛屿方法和多起点方法的效果,发现这些方法在降低能源消耗、缩短完成时间和提高解决方案质量方面具有显著优势。文章还展望了未来研究方向,包括方法选择策略优化、岛屿数量确定、方法结合深化及实际应用拓展等。原创 2025-06-21 15:25:15 · 11 阅读 · 0 评论 -
11、能源感知调度的并行进化算法
本文探讨了能源感知调度的并行进化算法,涵盖了虚拟化与任务整合的节能策略,分析了嵌入式系统和计算系统的节能方法,并介绍了问题建模的具体内容,包括系统模型、应用模型、能源模型和调度模型。此外,文章还研究了混合方法、岛屿方法和多启动方法的优势与应用场景,并展望了未来发展趋势,如算法融合、跨系统应用以及实时性和适应性的提升。这些方法和技术有助于在不同系统中实现能源高效利用和任务优化调度。原创 2025-06-20 12:02:58 · 10 阅读 · 0 评论 -
10、能源感知调度的并行进化算法
本文探讨了能源感知调度的并行双目标混合遗传算法。通过结合多目标并行遗传算法与能源感知调度启发式方法(ECS),该算法在降低能源消耗的同时优化完工时间。文章还对不同优化方法和系统级别策略进行了分类,并通过实验验证了新算法相较于DBUS和HEFT等现有方法的优势。原创 2025-06-19 13:32:59 · 14 阅读 · 0 评论 -
9、多目标优化算法的合作协同进化变体研究
本文研究了三种新的合作协同进化多目标优化算法变体,包括NSGA-II、SPEA2和MOCell的合作协同进化版本(CCMOEAs),并在连续优化和组合优化问题上进行了系统评估。通过使用超体积(HV)、SPREAD(Δ)和一元加法ε(Iε+)等指标,全面比较了这些算法与其原始版本的性能差异。实验结果表明,CCMOEAs在大多数问题上优于原始MOEAs,并实现了显著的计算加速比,尤其是在组合优化问题中表现突出。文章还探讨了未来的研究方向,包括异步通信和更大规模问题的应用拓展。原创 2025-06-18 16:04:49 · 18 阅读 · 0 评论 -
8、连续与组合优化的合作协同多目标进化算法
本文介绍了合作协同多目标进化算法(CCMOEAs)及其在连续与组合优化问题中的应用。详细描述了传统多目标进化算法(如NSGA-II、SPEA2和MOCell)以及新提出的CCMOEAs的框架和实现机制,并通过实验评估了其在DTLZ/ZDT连续问题和RSMP组合调度问题上的性能。结果表明,CCMOEAs在解集多样性和搜索效率方面具有显著优势,并具备良好的并行化能力,适用于复杂现实问题的多目标优化场景。原创 2025-06-17 14:40:05 · 25 阅读 · 0 评论 -
7、高效任务调度与多目标优化算法的创新探索
本文探讨了两种创新算法在解决复杂计算问题中的应用:高效分层任务调度算法和多目标合作协同进化算法。前者通过两步分层策略优化通信与计算成本,在不同工作流应用中表现出显著优于现有技术的能源效率和速度。后者基于合作协同进化框架,结合NSGA-II、SPEA2和MOCell等多目标优化算法,在连续和组合优化问题中实现了高质量的帕累托前沿逼近与良好的并行性能。研究还提出了未来改进方向,包括扩展到异构资源、云计算环境以及进一步优化并行化策略和存档管理。原创 2025-06-16 15:54:33 · 23 阅读 · 0 评论 -
6、高效网格任务调度:分层调度策略与性能分析
本文探讨了一种高效的网格任务分层调度策略,重点介绍了全局网格层面的递归凸聚类算法(RCCA)和本地集群层面的细胞遗传算法(cGA)。通过结合粗粒度与细粒度调度,该方法在高通信成本场景下表现出显著优势,包括更短的完工时间和更低的通信能耗。实验结果表明,该算法在不同计算与通信成本比(CCR)条件下均具有稳定且优越的性能表现。原创 2025-06-15 16:21:04 · 16 阅读 · 0 评论 -
5、网格上高效的分层任务调度解析
本文深入解析了网格计算环境下高效的分层任务调度方法。首先介绍了整体调度思路,将作业划分为多个组以降低通信成本,并分配到不同物理集群进行并行优化。随后详细阐述了系统模型、应用模型(如DAG表示的任务依赖关系)以及调度模型的复杂性问题。文章还分析了资源管理系统的三种调度器结构模型:集中式、分布式和分层调度器,并对常见的工作流调度方法进行了分类与比较,包括列表调度启发式、聚类算法及基于任务复制的调度方法。最后总结了各类调度策略的适用场景及其优缺点,为实际应用中的调度方案选择提供了理论依据和技术支持。原创 2025-06-14 13:32:17 · 13 阅读 · 0 评论 -
4、网格计算中任务分配与调度的多视角探索
本文深入探讨了网格计算中任务分配与调度的关键技术与方法,包括遗传算法的应用、游戏模型(如商品市场、拍卖和讨价还价模型)、神经网络和马尔可夫决策过程等。文章还介绍了一种新颖的分层任务调度算法,该算法通过递归凸聚类和GPU并行优化技术,在大规模网格环境中实现了高效的资源调度。同时分析了不同算法在性能、适应性和安全性方面的差异,并展望了未来智能化、绿色化调度的发展趋势。原创 2025-06-13 14:59:51 · 12 阅读 · 0 评论 -
3、计算网格中面向任务分配的用户决策解析
本文探讨了计算网格中面向任务分配的用户决策问题,重点分析了多级网格结构对用户行为的影响,并引入博弈论模型(如斯塔克尔伯格博弈)来处理不对称场景下的调度和资源管理问题。文章还介绍了基于遗传算法的四种混合调度器及其在不同规模网格中的性能表现,讨论了风险模式与安全模式的差异以及领导者与追随者策略的相互作用。通过案例研究验证了这些方法在独立批处理调度中的有效性,并展望了未来优化调度算法、考虑更多实际因素的研究方向。原创 2025-06-12 13:28:26 · 9 阅读 · 0 评论 -
2、面向任务分配的计算网格用户决策
本文探讨了计算网格环境中用户行为与任务分配的复杂性,重点分析了不同类型的网格用户及其需求,并引入博弈论作为建模工具,研究非合作和非对称场景下的用户决策机制。通过使用基于遗传算法的混合方法求解博弈均衡点,并在异构、大规模动态场景中进行实验评估,验证了所提方法在优化资源调度和提高任务完成效率方面的有效性。此外,还讨论了基于市场机制、神经网络和马尔可夫决策过程等其他建模方法,为网格架构设计者提供了全面的决策支持。原创 2025-06-11 12:36:39 · 11 阅读 · 0 评论