darknet 源码阅读(数据预处理篇)—— voc_label.py

本文深入解析Darknet框架下的YOLO数据预处理过程,重点介绍voc_label.py如何从VOC数据集提取图片和标注信息,转换为YOLO所需的格式,包括坐标归一化及文本标签生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

darknet 源码阅读(一)——yolo 数据预处理篇(voc_label.py)

简介

  • 本文都是基于darknet-AB版本源码进行解读。源码链接:https://github.com/AlexeyAB/darknet
  • voc——label.py 是yolo训练前数据预处理一部分,主要功能: 根据VOC数据集 ImageSets\Main目录下的train.txt、test.txt val.txt读取txt文件中图片名字,进而读取 Annotations\ 目录下对应的xml文件内坐标等信息进行处理,主要是groud truth x,y需要转化为groud truth 的中心坐标,进一步 框的x_center,y_center,w,h归一化到0-1。最终生成一个labels目录(用来保存x ,y,w,h,一张图片一个txt)和2007_train.txt和 2007_val.txt,2007_test.txt(这里假设years ).下面代码会详细介绍流程。

代码

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
# 2012代表年份, 2012train.txt 就是ImageSets\Main 下对应的txt名称,其依次类推, 换成自己数据集需修改sets
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

# classes 是所有类别名称, 换成自己数据集需要修改classes
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

#@params  size  图片宽高 
#@params  box  groud truth 框的x y w h
def convert(size, box):
    dw = 1./size[0]              # 用于下面框的坐标和高宽归一化
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0     # 求中心坐标
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))    # 读取 image_id 的xml文件
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')      # 保存txt文件地址
    tree=ET.parse(in_file)            
    root = tree.getroot()
    size = root.find('size')         # 读取图片 w h
    w = int(size.find('width').text)  
    h = int(size.find('height').text)

    for obj in root.iter('object'): 
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b) # w,h,x,y归一化操作
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')   # 一个框写入 

wd = getcwd() # 获取当前地址

for year, image_set in sets:
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()  # 读取图片名称
    list_file = open('%s_%s.txt'%(year, image_set), 'w')                                                                                    # 保存所有图片的绝对路径
    for image_id in image_ids:                                                                                                                        
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))                            
        convert_annotation(year, image_id)
    list_file.close()


from ppdet.core.workspace import load_config, merge_config # 1. 正确加载配置文件 cfg = load_config('/home/aistudio/PaddleDetection-2.5.0/configs/yolov3/yolov3_darknet53_270e_voc.yml') # 2. 确保使用字典格式参数 # 错误示例: merge_config({'weights': path}) # 实际创建的是集合 # 正确方式: merge_config({ 'weights': '/home/aistudio/PaddleDetection-2.5.0/output/yolov3_darknet53_270e_voc/best_model.pdparams' }) # 3. 批量预测完整代码 from ppdet.engine import Trainer import os import json # 初始化训练器(指定测试模式) trainer = Trainer(cfg, mode='test') trainer.load_weights(cfg.weights) # 加载权重 # 批量预测 image_dir = '/home/aistudio/helmet-dataset/test/images' output_file = 'pred_result.txt' results = trainer.predict( [os.path.join(image_dir, img) for img in os.listdir(image_dir)], draw_threshold=0.5 # 置信度阈值 ) # 手动保存文本结果 with open(output_file, 'w') as f: for img_path, pred in zip(os.listdir(image_dir), results): for obj in pred: # 格式:图片名 类别ID 置信度 xmin ymin xmax ymax line = f"{img_path} {obj['category_id']} {obj['score']} " \ f"{obj['bbox'][0]} {obj['bbox'][1]} " \ f"{obj['bbox'][2]} {obj['bbox'][3]}\n" f.write(line) --------------------------------------------------------------------------- KeyError Traceback (most recent call last) /tmp/ipykernel_1133/3769789729.py in <module> 26 results = trainer.predict( 27 [os.path.join(image_dir, img) for img in os.listdir(image_dir)], ---> 28 draw_threshold=0.5 # 置信度阈值 29 ) 30 ~/PaddleDetection-2.5.0/ppdet/engine/trainer.py in predict(self, images, draw_threshold, output_dir, save_results, visualize) 903 if visualize: 904 for outs in results: --> 905 batch_res = get_infer_results(outs, clsid2catid) 906 bbox_num = outs['bbox_num'] 907 ~/PaddleDetection-2.5.0/ppdet/metrics/coco_utils.py in get_infer_results(outs, catid, bias) 51 else: 52 infer_res['bbox'] = get_det_res( ---> 53 outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) 54 55 if 'mask' in outs: ~/PaddleDetection-2.5.0/ppdet/metrics/json_results.py in get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias) 28 if int(num_id) < 0: 29 continue ---> 30 category_id = label_to_cat_id_map[int(num_id)] 31 w = xmax - xmin + bias 32 h = ymax - ymin + bias KeyError: 4
06-15
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值