论文阅读 | Ghostnet网络

Ghostnet是一种由华为研发的轻量级网络结构,其速度与精度表现优异,尤其适用于资源受限的设备。核心贡献在于GhostModule的设计,通过分解普通卷积操作提升效率,同时保持较高的模型精度。在分类与检测任务上展现出了出色的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

  • paper: https://arxiv.org/abs/1911.11907
  • github:https://github.com/huawei-noah/ghostnet
  • Ghostnet(CVPR2020)是华为提出的一种轻量级网络,结构类似mobilenetV3,具有速度快、精度较高特点。论文中主要贡献是:提出Ghost Module
    在这里插入图片描述

Ghost Module

图2

  • 如图二所示, Ghost module 结构很简洁。(a)是普通卷积,(b)是ghost module.
  • 假设 i n p u t input input大小为: i n c × i n h × i n w in_c \times in_h \times in_w inc×inh×inw, o u t p u t output output大小为: o u t c × o u t h × o u t w out_c \times out_h \times out_w outc×outh×outw,
  • Ghost module将普通卷积拆解为三步执行,第一步先用 k × k k\times k k×k卷积核输出通道数为 i n i t _ c h a n n e l s init\_channels init_channels的feature maps, ( i n i t _ c h a n n e l s = c e i l ( o u t _ c h a n n e l s s ) init\_channels = ceil(\frac{out\_channels }{ s}) init_channels=ceil(sout_channels)), s代表将 o u t _ c h a n n e l s out\_channels out_channels分为s组。第二,在第一步的feature_maps上进行depthwise convolution(线性变换)输出 ( s − 1 ) × i n i t _ c h a n n e l s (s-1)\times init\_channels (s1)×init_channels通道的feature maps, 最后,将 i n i t _ c h a n n e l s init\_channels init_channels的feature maps和第二步输出的前 ( o u t _ c h a n n e l s − i n i t _ c a h n n e l s ) (out\_channels-init\_cahnnels) (out_channelsinit_cahnnels)个feature map concat一起。
  • Pytorch实现

性能分析

在这里插入图片描述

  • r s r_s rs可看出,当depthwise convolution 的kernel size d d d和前面的卷积核大小差不多时, FLOP运算量是普通卷积 1 s \frac{1}{s} s1
  • 论文中把feature maps分为2组时精度损失较少。

Bottleneck

在这里插入图片描述

  • 第一个Ghost module对channels进行扩充, 第二个Ghost module对channels进行降低。

Base Model

在这里插入图片描述

实验

在分类和检测任务上还是表现比较出色的。

  • Classifier in cifar and imagenet
    在这里插入图片描述
    在这里插入图片描述
  • Detector in Coco
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值