最小二乘法拟合直线C++实现(opencv验证)

本文介绍了一种使用C++实现的最小二乘法进行直线拟合的方法,该方法通过计算斜率和截距来拟合一组二维点,并提供了相关系数的计算公式,以评估拟合直线的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
c++代码实现

void LineFitLeastFit(const std::vector<cv::Point2f> &_points,float & _k,float & _b,float & _r) {

		float B = 0.0f;
		float A = 0.0f;
		float D = 0.0f;
		float C = 0.0f;

		int N = _points.size();
		for (int i = 0; i < N; i++)
		{
			B += _points[i].x;
			A += _points[i].x * _points[i].x;
			D += _points[i].y;
			C += _points[i].x * _points[i].y;
		}
		if ((N * A - B * B) == 0)
			return;
		_k = (N * C - B * D) / (N * A - B * B);
		_b = (A * D - C * B) / (N * A - B * B);
		//计算相关系数
		float Xmean = B / N;
		float Ymean = D / N;

		float tempX = 0.0f;
		float tempY = 0.0f;
		float rDenominator = 0.0;
		for (int i = 0; i < N; i++)
		{
			tempX += (_points[i].x - Xmean) * (_points[i].x - Xmean);
			tempY += (_points[i].y - Ymean) * (_points[i].y - Ymean);
			rDenominator += (_points[i].x - Xmean) * (_points[i].y - Ymean);
		}

		float SigmaXY = sqrt(tempX) * sqrt(tempY);
		if (SigmaXY == 0)
			return;
		_r = rDenominator / SigmaXY;
	}

运行结果:
在这里插入图片描述
opencv验证结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值