
LLM
文章平均质量分 86
Mr.Q
纸上得来终觉浅,绝知此事要躬行。 ---陆游
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM预训练过程-简明版本
如下上下文输入的是前4个tokens(逐渐增加输入tokens,理论上可以无限多个,但是实际计算量太大,会限制输入个数作为最大上下文长度),下一个token是3962,预测此token的概率。网络输出的是一个 100277维度的概率分布,每一个位置表示下一个是对应token的概率。:生成下一个 Token 时,始终基于已生成的历史内容,逐步扩展序列,直至满足终止条件(如达到指定长度或生成结束符)。语言模型训练的核心逻辑:基于上下文序列,预测下一个 token 的概率分布,并通过监督学习优化模型参数。原创 2025-03-12 20:25:29 · 331 阅读 · 0 评论 -
gpt简单实现
Query 来自一个序列(如解码器),Key/Value 来自另一个序列(独立的外部源,如编码器),用于处理两个序列之间的交互。(输入的实际信息),value是最终加权求和的内容,权重由query和key的相似度决定。(输入的特征),key用于与query计算相似度,确定哪些部分与当前query最相关。(当前关注点),例如,在处理句子时,query代表当前需要处理的词或位置。:Query、Key、Value 来自同一输入,用于捕捉序列内部的依赖关系。多头自注意力:由多个并行的自注意力组成。原创 2025-03-10 15:04:22 · 409 阅读 · 0 评论 -
简单的二元语言模型bigram实现
简单的二元语言模型bigram实现原创 2025-03-07 14:30:26 · 1086 阅读 · 0 评论 -
基于DeepSeek(本地部署)和RAGFlow构建个人知识库
纯本地部署大模型,并使用RAG微调模型。原创 2025-03-05 14:10:37 · 2575 阅读 · 1 评论 -
LoRA模型微调过程记录
LoRA算法是通过低秩矩阵调整原始模型的权重,并没有修改权重本身,所以需要将LoRA权重合并到原始权重,生成一个新的完整权重。先点击卸载模型,卸载deepseek-r1-1.5b-distill模型,再加载微调后的模型。机器自带了conda,这些修改conda的配置,将虚拟环境配置在数据盘,这样关闭机器后,此虚拟环境不会清空,且此机器资源不足时,可以将此虚拟环境克隆到另一个空闲机器上。注意关机后,可以此机器后会被其他人征用,再次开机需等待他的释放。这里的按照量计费,是开机使用则开始计费,关机这不计费。原创 2025-03-03 15:55:25 · 1151 阅读 · 1 评论 -
RLHF强化学习微调LLM
强化学习原创 2025-03-01 17:15:48 · 812 阅读 · 0 评论 -
LLM参数高效微调PEFT
Parameter-Efficient Fine-tuning, PEFT原创 2025-03-01 16:51:30 · 900 阅读 · 0 评论 -
多gpu计算策略
多gpu训练原创 2025-03-01 11:47:50 · 328 阅读 · 0 评论 -
显存占用计算方法
显存占用原创 2025-03-01 11:20:21 · 638 阅读 · 0 评论 -
生成式AI项目的生命周期
生成式AI项目的生命周期原创 2025-02-28 21:55:14 · 875 阅读 · 0 评论 -
LLM生成模型-推理参数设置
大模型推理参数原创 2025-02-28 16:37:17 · 342 阅读 · 0 评论 -
transformer结构
transformer结构原创 2025-02-28 11:18:54 · 1177 阅读 · 0 评论