
machine learning
文章平均质量分 67
Reader2号
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SVD分解算法及其应用
原文 http://elevencitys.com/?p=3923 矩阵的奇异值分解在矩阵理论的重要性不言而喻,它在最优化问题、特征值问题、最小乘方问题、广义逆矩阵问,统计学,图像压缩等方面都有十分重要的应用。 定义: 设A为m*n阶矩阵, A H A 的n个特征值的非负平方根叫作A的奇异值。记为 σ i (A)。 > 如果把A H A的特征值记为λ i (A),则σ i (A)= λ转载 2016-07-11 13:46:12 · 1105 阅读 · 0 评论 -
Rosenblatt感知机-神经网络与机器学习笔记1
一、Rosenblatt感知机小结感知机模型 输入向量:x(n)=[+1,x1(n),x2(n),...,xm(n)]Tx(n)=[+1,x_1(n),x_2(n),...,x_m(n)]^T 权重向量:w(n)=[b,w1(n),w2(n),...wm(n)]Tw(n)=[b,w_1(n),w2(n),...w_m(n)]^T 当输入向量线性可分时,我们需要寻找到一个合适的w,正确地分开原创 2016-11-17 15:35:18 · 749 阅读 · 0 评论 -
正则化最小二乘法——神经网络与机器学习笔记2
参考Andrew Ng 公开课的推导一些公式trA=∑ni=1AiitrA=\sum_{i=1}^nA_{ii} trAB=trBAtrAB=trBA trABC=trCBA=trBCAtrABC=trCBA=trBCA trA=trATtrA=trA^T if a∈Ra\in R, tra=atra=a ∇AtrAB=BT\nabla_AtrAB=B^T ∇AtrABATC=CAB+C原创 2016-11-24 10:31:50 · 2132 阅读 · 0 评论 -
自回归模型的LMS学习曲线-神经网络与机器学习笔记3
对于自回归模型x(n)=ax(n−1)+ϵ(n)x(n)=ax(n-1)+\epsilon(n) a=0.99a=0.99, σ2ϵ=0.02\sigma_\epsilon^2=0.02,σ2x=0.995\sigma_x^2=0.995 利用这个模型参数一组标准数据,然后使用LMS方法求解这个模型中的参数a 为了得到LMS学习曲线,我们将求解过程重复100次,并且每次产生不同的标准数据用于求原创 2016-12-08 21:41:30 · 3209 阅读 · 0 评论