对于多对多字段(ManyToManyField)和一对多字段, 可以使用prefetch_related()来进行优化
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。继续以上边的例子进行说明,如果我们要获得张三所有去过的城市,使用prefetch_related()应该是这么做:
1 2 3 |
zhangs = Person.objects.prefetch_related( 'visitation' ).get(firstname = u "张" ,lastname = u "三" ) >>> for city in zhangs.visitation. all () : ... print city |
上述代码触发的SQL查询如下:
1 2 3 4 5 6 7 8 9 10 |
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' ); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); |
第一条SQL查询仅仅是获取张三的Person对象,第二条比较关键,它选取关系表`QSOptimize_person_visitation`中`person_id`为张三的行,然后和`city`表内联(INNER JOIN 也叫等值连接)得到结果表。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
+ ----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | + ----+-----------+----------+-------------+-----------+ | 1 | 张 | 三 | 3 | 1 | + ----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) + -----------------------+----+-----------+-------------+ | _prefetch_related_val | id | name | province_id | + -----------------------+----+-----------+-------------+ | 1 | 1 | 武汉市 | 1 | | 1 | 2 | 广州市 | 2 | | 1 | 3 | 十堰市 | 1 | + -----------------------+----+-----------+-------------+ 3 rows in set (0.00 sec) |
显然张三武汉、广州、十堰都去过。
又或者,我们要获得湖北的所有城市名,可以这样:
1 2 3 4 |
>>> hb = Province.objects.prefetch_related( 'city_set' ).get(name__iexact = u "湖北省" ) >>> for city in hb.city_set. all (): ... city.name ... |
触发的SQL查询:
1 2 3 4 5 6 7 |
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.` name ` FROM `QSOptimize_province` WHERE `QSOptimize_province`.` name ` LIKE '湖北省' ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.` name `, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); |
得到的表:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
+ ----+-----------+ | id | name | + ----+-----------+ | 1 | 湖北省 | + ----+-----------+ 1 row in set (0.00 sec) + ----+-----------+-------------+ | id | name | province_id | + ----+-----------+-------------+ | 1 | 武汉市 | 1 | | 3 | 十堰市 | 1 | + ----+-----------+-------------+ 2 rows in set (0.00 sec) |
我们可以看见,prefetch使用的是 IN 语句实现的。这样,在QuerySet中的对象数量过多的时候,根据数据库特性的不同有可能造成性能问题。
使用方法
*lookups 参数
prefetch_related()在Django < 1.7 只有这一种用法。和select_related()一样,prefetch_related()也支持深度查询,例如要获得所有姓张的人去过的省:
1 2 3 4 5 |
>>> zhangs = Person.objects.prefetch_related( 'visitation__province' ). filter (firstname__iexact = u '张' ) >>> for i in zhangs: ... for city in i.visitation. all (): ... print
|