CS231n 笔记 神经网络可视化(上)

本文探讨了神经网络尤其是CNN的可视化方法,包括可视化卷积核、最后一层特征、激活值以及理解输入图像像素的重要像素。通过近邻法、维度压缩、Saliency Map、Guided backprop等技术揭示模型学到的语义内容,同时介绍Adversarial perturbations的概念,用于生成欺骗图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码部分网络可视化_iwill323的博客-CSDN博客

目录

问题引出

可视化模型学到了什么

可视化卷积核

 可视化最后一层的特征

近邻法

维度压缩

可视化激活值

理解输入图片像素

识别重要的像素

maximally activating patches

遮挡实验

​Saliency Map

通过Guided backprop生成图片

通过梯度上升可视化特征

Adversarial perturbations



问题引出

人们经常把CNN看做黑箱,所以CNN到底干了些什么


可视化模型学到了什么

可视化卷积核

通过可视化卷积核,知道卷积核在寻找什么。让模板向量和另一个向量相乘,得到标量结果,当这两个向量匹配(match up)的时候,结果最大化(比如,让一个向量与自己相乘,结果最大)。

比如,将AlexNet中第一层64个尺寸为3*11*11的卷积核展示位64个11*11、3通道的图片。

可以看到,几个模型中第一层卷积核都在寻找有向边(oriented edge)

中中间层权重的可读性比较差。下面的中间层是将每一个卷积核(16*7*7)展开成16个图片,看不出来这些权重在寻找什么特征。因为这些权重是与第一层的输出相连,而不是直接与图片相连,所以我们看到的是第一层什么样的特征能让第二层最大激活,然而第一层卷积特征在图片上的展示是不好解读的

 可视化最后一层的特征

近邻法

将一些图片送入CNN,收集他们在最后一层的4096维特征向量,用L2近邻法将这些特征向量与第一列(红线左侧)测试图片的特征向量比较,红线右侧是得到的近邻。观察第二行的大象,红线右侧第三个大象位于右侧,而测试图片位于左侧,按道理讲他们的像素几乎完全不同(almost entirely different),但是特征向量差别不大,据此Justin认为特征向量捕捉的是图片的语义内容

维度压缩

mnist数据集图片尺寸28*28,运用t-SNE将28*28维的原始像素特征空间压缩成2维,可以看到下图中的自然集群,这些集群对应了mnist数据集中的数据

 将大量图片送入CNN,收集他们的4096维特征向量,通过t-SNE降维把4096维特征空间压缩到2维特征空间

可视化激活值

 

AlexNet第五层的激活结果是13*13*256向量,其中一个GUP给出的结果是13*13*128向量,将这些向量可视化为128张图片(因为只有1个通道,所以图是灰色的)。测试图下面的那个图片是右边绿色框内图片的放大,可以看到该层激活量的一个slice(即feature map)正在寻找类似人脸的东西

 

 Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值