39、Python机器学习的基本概念【用Python进行AI数据分析进阶教程】

用Python进行AI数据分析进阶教程39:

Python机器学习的基本概念


关键词:Python、机器学习、监督学习、无监督学习、强化学习

摘要:本文概述了Python在机器学习中的应用,重点介绍了监督学习、无监督学习、半监督学习和强化学习的基本概念。监督学习利用有标记数据进行模型训练,适用于预测和分类任务。无监督学习发现数据内在结构,如聚类、降维,无需预定义标签。半监督学习结合少量标记数据和大量未标记数据,提高模型性能。强化学习通过智能体与环境的交互学习最优行为策略。文章还提及了各学习类型的关键点、注意点及实际应用举例,展示了Python在机器学习领域的广泛应用和灵活性。

👉 欢迎订阅🔗
《用Python进行AI数据分析进阶教程》专栏
《AI大模型应用实践进阶教程》专栏
《Python编程知识集锦》专栏
《字节跳动旗下AI制作抖音视频》专栏
《智能辅助驾驶》专栏
《工具软件及IT技术集锦》专栏


Python 是机器学习中常用的编程语言,下面结合 Python 来讲述机器学习中监督学习、无监督学习、半监督学习、强化学习的基本概念、关键点、注意点及示例:

一、监督学习

1、基本概念

在 Python 的机器学习语境中,监督学习是利用有标记的数据进行模型训练。通过给定的输入特征和对应的输出标签,让模型学习到两者之间的映射关系,从而对新的未知数据进行预测和分类等操作。比如利用 Python 的 Scikit-learn 库,可以使用线性回归模型来预测房屋价格,其中房屋的面积、房间数等信息是输入特征,实际的房屋价格是输出标签。

2、关键点

  • 数据标注数据集中的每个样本都有明确的输入特征和对应的输出标签,这是模型学习的基础。在 Python 中可以使用 Pandas 库来读取和处理带有标注的数据,例如dataframe = pd.read_csv('data.csv'),其中data.csv是包含标注数据的文件。
  • 模型选择与训练根据问题的类型和数据特点选择合适的模型,如分类问题可以选择决策树、逻辑回归等,回归问题可以选择线性回归、随机森林回归等。然后使用fit方法进行模型训练,如model.fit(X_train, y_train),其中X_train是训练数据的特征,y_train是训练数据的标签。
  • 评估指标使用准确率、精确率、召回率、均方误差等指标来评估模型的性能。在 Python 中可以通过 Scikit-learn 库的相关函数来计算这些指标,如accuracy_score(y_true, y_pred)用于计算分类问题的准确率。

3、注意点

  • 数据质量标注数据可能存在错误或噪声,会影响模型的准确性。在 Python 中可以通过数据清洗操作来处理,如去除重复数据、处理缺失值等,dataframe.drop_duplicates()可用于去除重复数据。
  • 过拟合问题模型可能过度拟合训练数据,导致在新数据上表现不佳。可以使用交叉验证等技术来防止过拟合,在 Scikit-learn 中可以使用cross_val_score函数进行交叉验证。
  • 特征工程选择和提取合适的特征对模型性能至关重要。在 Python 中可以使用特征选择算法和数据预处理方法,如SelectKBest选择 K 个最佳特征。

4、举例

垃圾邮件分类。标记数据是大量已标注为 “垃圾邮件” 或 “非垃圾邮件” 的邮件,输入特征可以是邮件的文本内容、发件人地址等,模型学习这些特征与标签的关系,对新邮件进行分类。

二、无监督学习

1、基本概念

无监督学习使用无标记的数据,旨在发现数据中的内在结构、模式或规律,如聚类、降维等。在 Python 中,可以使用 Scikit-learn 库的KMeans算法对数据进行聚类分析,比如对一群用户的消费行为数据进行分析,找出不同的消费群体。

2、关键点

  • 数据探索无需预先定义目标或标签,直接对数据进行探索性分析。在 Python 中可以使用数据可视化库如matplotlibseaborn来绘制数据的分布情况,帮助理解数据的特点。
  • 聚类与降维算法聚类算法如KMeans将数据划分为不同的簇,降维算法如主成分分析(PCA)用于减少数据的维度。在 Scikit-learn 中可以方便地调用这些算法,如kmeans = KMeans(n_clusters=3)进行 KMeans 聚类,pca = PCA(n_components=2)进行主成分分析。
  • 结果评估虽然无监督学习没有明确的标注信息,但可以使用轮廓系数、 Davies-Bouldin 指数等指标来评估聚类结果的质量,在 Python 中可以通过相应的函数计算这些指标。

3、注意点

  • 结果的不确定性无监督学习的结果通常不是唯一的,不同的算法或参数设置可能导致不同的结果。需要结合实际问题和业务需求来选择合适的结果。
  • 超参数选择KMeans算法中的聚类数量k需要人为指定,选择不当可能导致聚类结果不理想。可以通过尝试不同的k值,并结合评估指标来确定最佳的k
  • 数据预处理数据的标准化、归一化等预处理操作对无监督学习的结果影响较大。在 Python 中可以使用StandardScaler对数据进行标准化处理。

4、举例

客户细分。对电商平台的用户购买行为数据进行无监督学习,使用聚类算法将用户分为不同群体,如高消费群体、高频消费群体等,以便平台制定针对性营销策略。

三、半监督学习

1、基本概念

半监督学习结合了少量的标记数据和大量的未标记数据来训练模型,利用未标记数据中的信息来辅助模型学习,提高模型的性能和泛化能力。在 Python 中,可以使用LabelPropagation算法进行半监督学习,例如在文本分类任务中,利用少量已标注的文本和大量未标注的文本进行训练。

2、关键点

  • 数据结合合理地将少量标记数据和大量未标记数据结合起来使用。在 Python 中可以通过数据加载和处理的方式将标记数据和未标记数据整合到一起,如X_labeled, y_labeled, X_unlabeled = load_data()
  • 算法原理利用未标记数据中的结构信息和标记数据的监督信息来进行学习,如LabelPropagation算法通过传播标记信息来对未标记数据进行预测。
  • 模型优化在训练过程中,需要不断优化模型以充分利用两种数据的信息,提高模型的准确性和稳定性。

3、注意点

  • 标记与未标记数据比例两者的比例需要根据具体问题和数据特点进行调整,比例不合适可能导致模型无法充分利用数据信息。
  • 数据一致性标记数据和未标记数据的分布应该具有一定的一致性,否则可能会误导模型。
  • 模型复杂度半监督学习模型通常比监督学习和无监督学习模型更复杂,需要注意防止过拟合和训练时间过长等问题。

4、举例

图像分类。有少量标注的猫、狗图像和大量未标注图像,先利用未标注图像学习图像的通用特征,再结合标注图像学习猫、狗的特定特征,提高分类模型性能。

四、强化学习

1、基本概念

在 Python 的强化学习中,智能体在环境中不断进行交互,根据环境反馈的奖励信号来学习最优的行为策略,以最大化长期累积奖励。例如使用 OpenAI 的 Gym 库创建一个智能体在游戏环境中学习如何获得最高分数的任务。

2、关键点

  • 智能体与环境智能体根据环境的状态采取行动,环境根据智能体的行动返回新的状态和奖励。在 Python 中可以使用 Gym 库来创建环境和智能体,如env = gym.make('CartPole-v1')创建一个 CartPole 环境。
  • 奖励函数设计合理的奖励函数是强化学习的关键,它决定了智能体的学习目标和方向。奖励函数需要根据具体任务和目标来设计,如在机器人导航任务中,到达目标位置给予正奖励,碰撞到障碍物给予负奖励。
  • 策略学习智能体通过学习策略来决定在不同状态下采取何种行动,常见的策略学习算法有深度 Q 网络(DQN)、策略梯度算法等。在 Python 中可以使用深度强化学习库如StableBaselines3来实现这些算法。

4、注意点

  • 奖励设计奖励函数设计不合理可能导致智能体学习到不良策略,需要反复调整和优化。
  • 探索与利用平衡智能体需要在探索新的行动和利用已知的最优行动之间找到平衡,否则可能无法找到全局最优策略。
  • 训练稳定性强化学习的训练过程往往不稳定,容易出现波动甚至无法收敛的情况,需要注意调整算法参数和训练策略。

5、举例

机器人导航。机器人在一个未知环境中,通过不断尝试不同的移动方向,根据是否接近目标、是否碰撞等反馈获得奖励,学习到从当前位置到达目标位置的最优路径。

——The END——


🔗 欢迎订阅专栏

序号专栏名称说明
1用Python进行AI数据分析进阶教程《用Python进行AI数据分析进阶教程》专栏
2AI大模型应用实践进阶教程《AI大模型应用实践进阶教程》专栏
3Python编程知识集锦《Python编程知识集锦》专栏
4字节跳动旗下AI制作抖音视频《字节跳动旗下AI制作抖音视频》专栏
5智能辅助驾驶《智能辅助驾驶》专栏
6工具软件及IT技术集锦《工具软件及IT技术集锦》专栏

👉 关注我 @理工男大辉郎 获取实时更新

欢迎关注、收藏或转发。
敬请关注 我的
微信搜索公众号:cnFuJH
CSDN博客:理工男大辉郎
抖音号:31580422589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理工男大辉郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值