iii12
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
32、同质与异质合作搜索策略在无容量单分配 p - 枢纽中位问题中的应用
本文探讨了同质与异质合作搜索策略在无容量单分配 p - 枢纽中位问题(USApHMP)中的应用。通过结合禁忌搜索(Tabu Search)、模拟退火(Simulated Annealing)和变邻域下降搜索(VND)等元启发式算法,研究分析了孤立求解器与合作策略在不同规模和复杂度实例中的性能表现。实验结果表明,合作策略能够显著降低平均误差,尤其是在小规模实例中效果显著。同时,异质合作策略在复杂的大规模问题中表现出更强的适应性。研究还提出了策略选择的决策流程,并展望了未来改进合作机制和拓展应用领域的发展方向。原创 2025-07-22 00:27:53 · 19 阅读 · 0 评论 -
31、块重定位问题算法及合作搜索策略研究
本文探讨了块重定位问题(Block Relocation Problem, BRP)的优化算法及其在物流和仓储领域的重要性。重点介绍了Move_Selection算法的设计与实现,并分析了其通过合作搜索策略提升解决方案质量的机制。同时,对同质与异质合作搜索策略进行了实验对比,结果表明异质合作策略在解的质量和计算效率方面均优于其他方法。研究结果为解决大规模优化问题提供了有效支持,并展望了未来在动态调整策略和多领域应用中的发展方向。原创 2025-07-21 12:33:12 · 17 阅读 · 0 评论 -
30、引导走廊方法的合作策略
本文介绍了一种用于解决物流仓储领域货物块重定位问题(BRP)的合作算法。该算法结合了走廊方法,通过限制搜索空间提高操作效率。算法分为四个阶段:走廊定义、邻域设计和探索、移动评估和选择、轨迹探索。通过实际应用案例分析,该算法相比传统方法在减少重定位次数和提升计算效率方面具有显著优势。同时,还讨论了参数选择对算法性能的影响,并提出了优化建议,为未来研究和应用提供了方向。原创 2025-07-20 14:53:33 · 20 阅读 · 0 评论 -
29、并行超体积引导的超启发式算法与走廊方法协同策略解析
本文详细解析了两种优化问题解决策略:并行超体积引导的超启发式算法和走廊方法的协同策略。前者通过自适应机制动态分配计算资源,结合评分和随机选择策略,有效提升多目标优化问题的求解效率;后者结合局部搜索和GRASP思想,在物流调度等实际问题中表现出高效的邻域探索能力。文章通过实验评估和流程图展示了两种方法的执行效果和适用场景,并探讨了其未来的发展方向。原创 2025-07-19 12:09:36 · 12 阅读 · 0 评论 -
28、传染病控制与多目标优化的创新策略
本文探讨了传染病控制中的隔离与检疫策略,并引入多目标优化的创新并行模型。通过分析关键参数π、隔离时间延迟$T_I$、检疫期$T_Q$以及社会成本比例参数μ,研究了如何在疫情爆发时实现有效控制与成本最小化。同时,介绍了基于岛基模型和超体积引导的超启发式并行优化方法,用于解决多目标优化问题。最后,文章展望了未来的研究方向,包括完善社会成本模型、改进优化模型的适应性以及将多目标优化应用于疫情防控等领域。原创 2025-07-18 13:10:57 · 10 阅读 · 0 评论 -
27、MONEDA算法与疫情防控隔离策略的研究
本文探讨了MONEDA算法在计算复杂度和优化质量方面的优势,以及疫情防控中隔离策略的数学建模与优化。研究发现,MONEDA算法在处理高维度多目标优化问题时具有更低的计算成本和更好的扩展性。同时,通过构建基于SIR模型的隔离策略数学模型,研究得出了快速识别感染者和合理设置隔离期对疫情控制的重要影响。文章从算法和防控两个角度出发,分析了资源优化利用的共性,并提出了未来算法改进和防控策略优化的方向,旨在为相关领域的发展提供理论支持和实践指导。原创 2025-07-17 12:03:27 · 9 阅读 · 0 评论 -
26、多目标神经分布估计算法的计算特性
本文深入研究了多目标神经分布估计算法(MONEDA)的计算特性,重点分析其在处理多目标优化问题(MOPs)时的优化效率和计算成本。通过与多种主流多目标优化算法的对比实验,结果显示MONEDA在解质量(以超体积指标衡量)和计算效率(以CPU操作数和运行时间衡量)方面均表现出显著优势,特别是在应对高维目标问题时能够有效缓解维度诅咒。文章还探讨了MONEDA在实际工程和学术研究中的应用前景,并对其未来的发展方向进行了展望。原创 2025-07-16 12:27:07 · 11 阅读 · 0 评论 -
25、用于纳什均衡检测的进化多模态优化
本文探讨了如何利用进化多模态优化方法,特别是漫游优化技术,来解决具有多个纳什均衡的多人标准形式博弈问题。博弈论在经济和社会领域有广泛应用,但传统数学方法在处理多均衡问题时存在局限性。进化算法通过其强大的全局搜索能力,为检测纳什均衡提供了新的思路。文章介绍了博弈论基础、进化多模态优化方法,并重点分析了漫游优化的原理与优势。实验结果表明,漫游优化在多个测试问题中均表现出色,优于差分进化、粒子群优化等启发式方法以及GAMBIT软件。此外,文章还讨论了该技术在经济、社会和工程等领域的应用前景,提出了未来研究方向。原创 2025-07-15 10:44:19 · 13 阅读 · 0 评论 -
24、协作分类器:原理、策略与实验分析
本文探讨了协作分类器的原理、策略及其在智能体协作中的实验分析。文章详细讨论了神经网络克隆的局限性、决策树的结构特点与共享机制、支持向量机的工作原理及其知识共享策略,并通过三个实验比较了不同合作策略的效果。实验结果表明,支持向量机在协作效率和知识共享方面表现突出,而神经网络克隆因架构匹配限制和知识融合困难效率较低。研究还总结了不同智能体架构对协作效率的影响,并展望了未来的研究方向,如优化信息过载问题和提升协作易用性。原创 2025-07-14 11:03:19 · 11 阅读 · 0 评论 -
23、基于地形的模因算法与协作分类器研究
本文探讨了基于地形的模因算法在矢量量化码本设计中的应用,以及协作分类器在不稳定环境中的协作策略。重点分析了sTBMA和mTBMA两种算法的参数设置、性能比较及统计检验结果,并研究了协作分类器的通信策略与合作机制。实验结果表明,mTBMA算法在动态参数调整和码本优化方面具有显著优势,而支持向量机在协作分类中表现优异。最后提出了未来的研究方向,包括参数控制优化、代理移动规则设计以及局部搜索算法的应用。原创 2025-07-13 09:49:47 · 14 阅读 · 0 评论 -
22、基于地形的模因算法用于矢量量化器设计
本文提出了基于地形的模因算法(TBMA)用于矢量量化器设计,旨在克服传统K-Means算法容易陷入局部最优的问题。通过引入静态TBMA(sTBMA)和动态TBMA(mTBMA)两种算法,自动调整局部搜索模块中的比例因子(η)和突变率(pmut),从而提高图像编码的效率和质量。实验结果表明,mTBMA在减少迭代次数的同时显著提升了图像的峰值信噪比(PSNR),为图像压缩和编码领域提供了一种高效的新方法。原创 2025-07-12 12:01:30 · 7 阅读 · 0 评论 -
21、交互式模拟退火多智能体平台与遗传算法高级锦标赛选择概念
本文介绍了交互式模拟退火多智能体平台(ISAM)和遗传算法中的精英锦标赛选择方法。ISAM 平台能够高效解决分层多准则调度问题,具有目标适应性强、问题规模独立性和分层优化逻辑清晰的优势。同时,精英锦标赛选择改进了传统锦标赛选择,确保最优个体的存活,提升了遗传算法的稳定性和收敛性。文章还对比了两种算法的特性与应用场景,并展望了未来的研究方向。原创 2025-07-11 16:56:00 · 14 阅读 · 0 评论 -
20、交互式模拟退火多智能体平台解决分层调度问题
本文介绍了一种基于交互式模拟退火多智能体(ISAM)平台的分层多标准调度解决方案。该平台结合模拟退火元启发式算法与自适应内存(禁忌中央内存,TCM),实现了大规模调度问题中对多个标准的分层优化。通过引入交互性,决策者可以动态调整目标,从而获得更符合实际需求的解决方案。ISAM 平台在实验中表现出强大的通用性和高效性,尤其在处理大规模问题时优于传统方法。该技术可广泛应用于工业生产调度、物流配送和项目管理等领域。原创 2025-07-10 16:43:26 · 11 阅读 · 0 评论 -
19、基于多群体遗传算法的景观映射
本文介绍了一种基于多智能体系统框架的并行遗传算法——多群体遗传算法(MPGA),用于在有限资源和给定时间内搜索函数的局部最大值、最小值和鞍点。通过引入新的适应度定义和迁移机制,MPGA 能够在不同复杂度的景观中有效地定位局部极值,并揭示了覆盖度和精度之间的不确定性关系。实验结果表明,MPGA 在多个基准函数上均表现出色,为复杂景观映射提供了一种强有力的工具。原创 2025-07-09 16:09:42 · 13 阅读 · 0 评论 -
18、遗传算法在车间调度与景观映射中的应用
本文介绍了遗传算法在两个不同领域的应用:带阻塞流水车间调度和复杂系统的景观映射。第一部分详细描述了一种改进的遗传算法,通过交叉、变异、局部搜索、种群多样化和路径重连等策略,成功应用于最小化作业总延迟的车间调度问题,并与GRASP元启发式算法进行了比较,取得了良好的优化效果。第二部分介绍了一种多群体遗传算法(MPGA),用于复杂系统的能量景观映射,通过子种群划分和迁移操作符设计,有效提高了景观映射的覆盖度和精度。文章还对两种算法的性能、流程和应用场景进行了对比分析,并探讨了未来算法改进和跨领域应用的发展方向。原创 2025-07-08 12:18:26 · 11 阅读 · 0 评论 -
17、可变规模合作协同进化策略与遗传算法在调度问题中的应用
本博文探讨了可变规模合作协同进化策略与遗传算法在优化问题中的应用。重点分析了在分类问题中,缩减-膨胀策略通过动态调整种群规模和维持遗传多样性,有效提高了计算效率和结果质量。同时,针对带阻塞的流水车间延迟最小化问题,设计了一种结合局部搜索、种群多样性控制和路径重连技术的遗传算法,并验证了其在求解效率和解的质量方面的优势。通过实验对比与分析,展示了这些策略在不同问题中的潜力,并展望了其在农业食品过程建模、物流调度等复杂问题中的应用前景。原创 2025-07-07 12:41:28 · 8 阅读 · 0 评论 -
16、可变大小单种群合作协同进化策略的实验分析
本文研究了基于可变大小单种群的合作协同进化策略,并将其应用于卡芒贝尔奶酪成熟过程的阶段估计问题。通过设计种群缩小和种群缩小+扩大方案,动态调整种群大小以平衡探索与开发能力,提升了算法的效率和全局适应度。实验表明,该策略能够有效减少冗余个体,避免停滞,并在处理复杂、稀疏数据方面表现出色。原创 2025-07-06 12:33:40 · 14 阅读 · 0 评论 -
15、基于SOMA进化算法的机翼气动优化
本文介绍了基于SOMA(Self Organizing Migrating Algorithm)进化算法的飞机机翼气动优化研究。SOMA是一种受生物进化启发的全局优化算法,通过调整种群个体的参数,寻找最优的机翼设计方案。文章详细阐述了SOMA算法的基本参数、种群生成、变异和迁移机制,并将其应用于VUT-100 Cobra飞机的机翼优化。优化目标包括最小化诱导阻力、表面摩擦、机翼面积以及满足升力曲线形状的要求。实验结果表明,SOMA算法能够有效优化机翼几何参数,生成高展弦比、低阻力且满足失速特性的机翼设计方案原创 2025-07-05 09:30:23 · 15 阅读 · 0 评论 -
14、双群粒子群优化算法与机翼气动优化
本文介绍了两种优化算法及其应用:双群粒子群优化算法(Two-Swarm PSO)用于解决竞争选址问题,以及自组织迁移算法(SOMA)用于机翼气动优化。文章详细阐述了两种算法的实现过程、参数设置、邻域结构以及优劣势对比,同时通过具体案例展示了算法的实际效果。最后,文章对两种算法的未来研究方向进行了展望,为优化算法在不同领域的应用提供了参考。原创 2025-07-04 13:57:04 · 10 阅读 · 0 评论 -
13、优化算法在车辆路径与竞争选址问题中的应用
本文探讨了两种优化算法在复杂实际问题中的应用:改进的跳跃青蛙优化算法(MOJFO)用于解决带有时间窗的车辆路径问题(VRPTW),展示了其从不可行解逐步演化到可行解的能力;两群粒子群优化算法则用于解决竞争环境下的选址问题,特别是领导者-追随者模型中的(r|p)-质心问题。通过粒子群优化算法的模拟和优化,为企业在竞争环境中的选址决策提供了新思路。原创 2025-07-03 12:01:31 · 10 阅读 · 0 评论 -
12、车辆路径问题中可行与不可行区域的探索
本文介绍了一种用于解决车辆路径问题的多目标跳跃青蛙优化算法(MOJFO)。该算法通过重新定义粒子的移动方式,能够在离散空间中有效搜索,特别是在可行与不可行区域之间转换。MOJFO 结合了惯性、认知、局部和全局移动策略,同时利用帕累托支配筛选和更新解,从而找到高质量的非支配解。实验表明,该算法能够从不可行解进化为可行解,且无需特定初始化策略或处理不可行性的运算符。此外,还探讨了MOJFO与其他优化算法的比较、实际应用场景及未来拓展方向。原创 2025-07-02 15:35:20 · 13 阅读 · 0 评论 -
11、动态环境下的优化算法研究:SDPSO与VRPTW的探索
本文探讨了动态环境下基于SDPSO算法的优化方法及其在追踪最优解中的应用,同时研究了多目标离散PSO在解决带时间窗的车辆路径问题(VRPTW)中的潜力。通过实验分析,SDPSO展现了在动态环境中高效追踪最优解的能力,而多目标离散PSO则通过动态权衡目标,将不可行解转化为可行解,为VRPTW提供了一种新的解决方案。两种算法在动态优化和物流路径规划中具有广泛的应用前景。原创 2025-07-01 09:11:32 · 11 阅读 · 0 评论 -
10、数据聚类与动态环境下的粒子群优化算法
本文介绍了离散粒子群优化算法(DPSOA)在数据聚类中的应用,以及简单分布式粒子群优化算法(SDPSO)在动态环境中的优化能力。DPSOA通过新颖的方案在数据聚类问题中取得了良好的效果,而SDPSO则通过独特的适应度值更新机制实现了对动态环境的自我适应,表现出更强的环境适应性和响应速度。文章还对比了SDPSO与经典PSO及其他改进PSO算法的性能,展示了SDPSO在动态环境中跟踪最优解的能力,并探讨了其在金融市场预测、交通流量优化、无线传感器网络等领域的应用前景。原创 2025-06-30 12:30:19 · 11 阅读 · 0 评论 -
9、离散粒子群优化算法用于数据聚类
本文详细介绍了离散粒子群优化算法(DPSOA)在数据聚类中的应用。DPSOA是一种基于粒子群优化的离散版本算法,通过簇块表示数据对象,并利用概率变化的速度生成机制来优化聚类过程。文章从算法概述、结构、粒子定义、初始化、速度生成、序列构建、搜索方案以及性能分析等方面进行了详细阐述。实验结果表明,DPSOA在多个基准数据集上表现出色,优于遗传算法、差分进化和传统PSO等方法,尤其在解决方案质量和收敛速度方面具有显著优势。该算法为复杂数据聚类问题提供了一种有效的解决途径。原创 2025-06-29 10:36:55 · 8 阅读 · 0 评论 -
8、资源受限项目调度的粒子群拓扑与数据聚类的离散粒子群算法
本文探讨了粒子群优化算法在资源受限项目调度(RCPSP)和数据聚类领域的应用。在RCPSP中,比较了不同粒子群拓扑结构(如gbest、lbest、wheel和H-PSO)的性能,发现lbest拓扑结构在避免局部收敛和长期性能方面表现最优。同时,提出了一种用于数据聚类的离散粒子群优化算法(DPSOA),结合TRW和VRC性能指标,展示了其在解决离散聚类问题上的有效性。研究结果表明,DPSO系列算法在这两个领域均具有较强竞争力和广泛应用前景。原创 2025-06-28 11:59:18 · 10 阅读 · 0 评论 -
7、优化算法在资源分配与项目调度中的应用
本文探讨了无容量限制工厂周期选址问题(UPCLP)和资源受限项目调度问题(RCPSP)的优化算法。针对UPCLP,采用基于蜜蜂交配优化算法的启发式方法,在解决大规模问题上表现出显著优势;针对RCPSP,应用离散粒子群优化(DPSO)算法,并结合不同的种群拓扑结构,有效提高了调度方案的质量。文章还分析了不同算法的操作步骤、性能对比及未来研究方向。原创 2025-06-27 11:25:13 · 14 阅读 · 0 评论 -
6、非结构化道路检测与无容量限制工厂循环选址问题的解决方案
本博客探讨了两种复杂问题的解决方案:非结构化道路检测和无容量限制工厂循环选址问题(UPCLP)。针对非结构化道路检测,提出了一种结合可见光光谱和热成像信息的方法,并基于蚁群优化(ACO)算法提高了检测的准确性。对于UPCLP问题,采用了一种基于蜜蜂交配优化(HBMO)的启发式算法,通过模拟蜜蜂的交配过程来寻找最优的工厂选址和客户分配方案。两种方法在复杂环境下均表现出良好的适应性和有效性。原创 2025-06-26 15:17:26 · 10 阅读 · 0 评论 -
5、利用可见光和红外图像及蚁群优化算法检测非结构化道路
本文介绍了一种结合可见光和红外图像以及蚁群优化算法(ACO)来检测非结构化道路的方法。传统车道检测方法在缺乏先验信息的非结构化环境中效果不佳,而该方法通过引入ACO算法,利用可见光和红外图像的互补性,实现了对道路边界的准确识别。文章详细描述了算法的步骤,包括殖民地初始化、吸引点引入、移动规则、信息素更新及解决方案提取等。此外,还讨论了该方法在实际应用中的挑战及应对策略,总结了其优势与未来优化方向。原创 2025-06-25 12:55:01 · 33 阅读 · 0 评论 -
4、法老蚁觅食行为与信息素网络的奥秘
本研究探讨了法老蚁的觅食行为及其依赖的信息素网络机制,揭示了行为异质性对觅食效率的重要影响。通过基于代理的建模与实验模拟,发现少数频繁进行U型转弯的蚂蚁在轨迹网络的建立和维护中起关键作用,从而提高了蚁群对新食物资源的响应速度。研究还表明,蚂蚁通过信息素进行的分散式通信具有广泛、实时和适应性强的优势,为虚拟蚁群搜索算法的设计提供了重要的启发。这些发现不仅深化了对生物系统行为的理解,也为自然启发计算提供了新的方向。原创 2025-06-24 13:23:52 · 29 阅读 · 0 评论 -
3、敏感蚂蚁与蚁群网络中的分散通信:优化与探索
本文探讨了敏感蚂蚁模型(SAM)在解决旅行商问题(TSP)中的应用及其通过异质代理行为提升优化能力的机制,并分析了蚁群网络中的分散通信策略,尤其是法老蚁的觅食行为对群体智能研究和实际应用的启示。文章结合数值实验和行为研究,展示了SAM算法的优势以及蚁群通信机制在物流、传感器网络等领域的广泛应用前景,同时指出了未来在自适应调整、算法融合和动态环境研究等方面的发展方向。原创 2025-06-23 09:13:56 · 34 阅读 · 0 评论 -
2、敏感蚂蚁:在蚁群中引入多样性
本文介绍了敏感蚂蚁模型(SAM)这一改进的元启发式算法,通过在蚁群系统中引入信息素敏感性的异质性,实现搜索多样化与强化的有效平衡。重点探讨了其在旅行商问题(TSP)中的应用,分析了算法原理、特点及参数调整方法,并总结了其在多个领域中的潜力与优势。原创 2025-06-22 16:31:15 · 31 阅读 · 0 评论 -
1、随机算法中的探索:MAX - MIN蚁群系统的应用
本文围绕随机算法的探索行为展开,提出了一种基于聚类分析的探索定义与量化方法,并将其应用于MAX-MIN蚁群系统求解旅行商问题的实例中。通过实验分析算法的主要参数(如α、β、ρ、m)对探索程度的影响,揭示了参数变化与搜索行为之间的关系,为随机算法的参数选择和优化提供了理论支持和实践指导。研究结果表明,α和β值越高,探索能力越强;ρ在阈值前探索随其增加而提升,超过阈值则下降;m的增加整体上降低了探索程度。此外,本文还探讨了该方法在实际应用中的意义,并对未来研究方向进行了展望。原创 2025-06-21 11:24:39 · 31 阅读 · 0 评论