遥感卫星云检测与双相机指向差异分析方法
云检测方法
云检测的应用背景对云特征的提取和选择提出了诸多特殊要求。一方面,由于云的多样性和特征的复杂性,常需利用多种特征来区分云区域,以增强云与陆地在特征空间中的可分离性;另一方面,为减少计算量,云检测常需对遥感数据进行采样,这就要求特征满足尺度不变性,即特征不会因多尺度图像而改变。
在提出的方法中,此阶段使用了五种特征,可分为两类:
- 衡量对象混合程度的特征 :包括灰度方差、直方图非零宽度和方差标准比。
- 衡量单一类型的特征 :包括灰度均值和云覆盖率。
以下是这些特征的提取方法:
1. 灰度均值提取 :
灰度均值是对上下界 (F_h) 和 (F_l) 之间像素的灰度值进行累加并求平均,其模型为:
[q = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} f(i, j), F_l \leq f(i, j) \leq F_h]
2. 灰度方差提取 :
灰度方差是计算上下界 (F_h) 和 (F_l) 之间像素的灰度方差,模型为:
[r = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [f(i, j) - q]^2, F_l \leq f(i, j) \leq F_h]
3. 直方图非零宽度 :
直方图非零宽度是上下界 (F_h) 和 (F_l) 之间的差值。
4.