27、遥感卫星云检测与双相机指向差异分析方法

遥感卫星云检测与双相机指向差异分析方法

云检测方法

云检测的应用背景对云特征的提取和选择提出了诸多特殊要求。一方面,由于云的多样性和特征的复杂性,常需利用多种特征来区分云区域,以增强云与陆地在特征空间中的可分离性;另一方面,为减少计算量,云检测常需对遥感数据进行采样,这就要求特征满足尺度不变性,即特征不会因多尺度图像而改变。

在提出的方法中,此阶段使用了五种特征,可分为两类:
- 衡量对象混合程度的特征 :包括灰度方差、直方图非零宽度和方差标准比。
- 衡量单一类型的特征 :包括灰度均值和云覆盖率。

以下是这些特征的提取方法:
1. 灰度均值提取
灰度均值是对上下界 (F_h) 和 (F_l) 之间像素的灰度值进行累加并求平均,其模型为:
[q = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} f(i, j), F_l \leq f(i, j) \leq F_h]
2. 灰度方差提取
灰度方差是计算上下界 (F_h) 和 (F_l) 之间像素的灰度方差,模型为:
[r = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [f(i, j) - q]^2, F_l \leq f(i, j) \leq F_h]
3. 直方图非零宽度
直方图非零宽度是上下界 (F_h) 和 (F_l) 之间的差值。
4.

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 以下是一个使用 Python 调用 TensorRT 转换后的 RT-DETR 模型进行单张图片或图片文件夹批量推理的代码实现说明。该代码通过输入图片路径或文件夹路径、模型路径以及输出图片保存路径,即可完成推理并生成测试结果。运行时,只需使用命令 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ --models ./rtdetr_hgnetv2_l_6x_coco.trt” 即可。 这段代码是用于部署 RT-DETR 模型的。它基于 Python 编写,调用了 TensorRT 转换后的模型,能够实现对单张图片或整个图片文件夹的批量推理操作。用户需要提供输入图片的路径(可以是单张图片的路径或包含多张图片的文件夹路径)、模型文件的路径以及推理结果输出图片的保存路径。当所有参数配置完成后,通过运行 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ --models ./rtdetr_hgnetv2_l_6x_coco.trt” 这条命令,就可以得到相应的测试结果。 本代码旨在实现 RT-DETR 模型的部署,采用 Python 编程语言,并利用 TensorRT 转换后的模型进行推理。它可以针对单张图片或图片文件夹进行批量推理。用户需要输入图片路径(单张图片或文件夹)、模型路径以及输出图片保存路径。运行时,使用 “python ./infer_tensorrt.py --infer_dir=./inputimgs/ --output_dir ./outputimgs/ -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值