27、MONEDA算法与疫情防控隔离策略的研究

MONEDA算法与疫情防控隔离策略的研究

1. MONEDA算法的计算特性

在算法性能评估中,我们对不同算法和问题维度计算了指标值,并总结在表1中。从表中可以明显看出,在大多数情况下,尤其是在高维度问题中,MONEDA算法的表现优于其他算法。

算法 问题维度 指标值
MONEDA 高维度
其他算法 高维度 一般

为了进行实验,我们测量了优化过程中使用的浮点CPU操作数量。这样做的目的是在比较不同算法时,仅考虑优化所需的计算工作量,排除算法其他方面或计算环境的干扰。

图1总结了每个算法的平均迭代次数、模型构建过程中每次迭代的平均CPU操作数以及算法使用的平均总CPU操作数。

从这些测试中可以得出一个基本结论:MONEDA算法在计算复杂度方面具有更好的扩展性。这一系列的测量结果进一步证实了之前研究中得出的结论。因此,我们可以得出主要结论:MONEDA算法不仅在多目标优化问题(MOP)的求解质量方面具有优势,而且与类似方法相比,它能够以更低的计算成本实现这一目标。这一优势得益于其采用的快速模型构建算法。

表2总结了不同实验的平均运行时间。这些数据再次证实了前面得出的结论,同时也显示出实验的持续时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值