MONEDA算法与疫情防控隔离策略的研究
1. MONEDA算法的计算特性
在算法性能评估中,我们对不同算法和问题维度计算了指标值,并总结在表1中。从表中可以明显看出,在大多数情况下,尤其是在高维度问题中,MONEDA算法的表现优于其他算法。
算法 | 问题维度 | 指标值 |
---|---|---|
MONEDA | 高维度 | 优 |
其他算法 | 高维度 | 一般 |
为了进行实验,我们测量了优化过程中使用的浮点CPU操作数量。这样做的目的是在比较不同算法时,仅考虑优化所需的计算工作量,排除算法其他方面或计算环境的干扰。
图1总结了每个算法的平均迭代次数、模型构建过程中每次迭代的平均CPU操作数以及算法使用的平均总CPU操作数。
从这些测试中可以得出一个基本结论:MONEDA算法在计算复杂度方面具有更好的扩展性。这一系列的测量结果进一步证实了之前研究中得出的结论。因此,我们可以得出主要结论:MONEDA算法不仅在多目标优化问题(MOP)的求解质量方面具有优势,而且与类似方法相比,它能够以更低的计算成本实现这一目标。这一优势得益于其采用的快速模型构建算法。
表2总结了不同实验的平均运行时间。这些数据再次证实了前面得出的结论,同时也显示出实验的持续时间