26、多目标神经分布估计算法的计算特性

多目标神经分布估计算法的计算特性

1. 引言

多目标优化问题(MOPs)一直是自然启发和进化计算领域的重要研究课题。在这类问题中,优化器需要找到一组可行解,以共同最小化(或最大化)两个或多个目标函数的值,同时满足一组约束条件。多目标优化进化算法(MOEAs)在解决此类问题上取得了一定的成功,这主要归功于它们的并行全局搜索能力以及对底层适应度景观形状不做特定假设的特点。

然而,当处理具有大量目标函数的多目标优化问题(即多目标优化问题)时,MOEAs 会受到维度诅咒的严重影响。研究表明,目标空间的维度与正确解决问题所需的资源量之间存在指数依赖关系。

为了解决这个问题,一种可能的方法是采用更高效的进化方法,如分布估计算法(EDAs)。EDAs 用构建种群中最适合元素的统计模型的过程取代了进化算子的应用。这个模型随后被采样以产生新的元素。EDAs 扩展到多目标领域后,形成了多目标分布估计算法(MOEDAs)。尽管 MOEDAs 具有有前景的特性,但在解决多目标问题时,它们相对于标准进化算法并没有取得实质性的改进。

多目标神经分布估计算法(MONEDA)的提出旨在有效处理多目标优化问题。MONEDA 受益于 EDAs 更简单的算法,同时改进了对复杂多目标问题的处理。特别是,MONEDA 引入了一种新颖的模型构建算法,以满足 MOPs 的特定要求。虽然之前的实验表明 MONEDA 在优化效率方面优于其他 MOEDAs 和 MOEAs,但它的计算特性尚未得到充分研究。本文的主要目的是探索 MONEDA 的计算需求,并评估其在处理具有大量目标的问题时的扩展性。

2. 理论背景

2.1 多目标优化问题的定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值