用于纳什均衡检测的进化多模态优化
在经济和社会领域,博弈论有着广泛的应用。其中,求解具有多个纳什均衡的多人标准形式博弈是一项极具挑战性的任务。传统的数学算法在处理具有多个均衡的博弈时,往往难以一次性检测出所有的均衡。而进化算法作为强大的搜索工具,为解决这类复杂的优化问题提供了新的思路。本文将介绍如何利用为多模态优化设计的进化算法来解决标准形式博弈问题。
1. 博弈论基础
博弈论主要分为合作博弈论和非合作博弈论两个分支,本文主要探讨非合作博弈论,即智能/理性个体为实现自身目标而相互交互的情况。
一个有限标准形式博弈可以定义为 $\Gamma = ((N,S_i,u_i),i = 1,N)$,其中:
- $N$ 表示玩家的数量。
- 对于每个玩家 $i \in {1,…,N}$,$S_i$ 表示其可用的行动集合,$S_i = {s_{i1}, s_{i2},…, s_{im}}$,$S = S_1 \times S_2 \times…\times S_N$ 是博弈的所有可能情况的集合。
- 对于每个玩家 $i \in {1,…,N}$,$u_i : S \to R$ 表示收益函数。
设 $P_i$ 是 $S_i$ 上的实值函数集合,$p_{ij} = p_i(s_{ij})$ 用于表示 $P_i$ 中的元素。$P = \times_{i=1,…,N}P_i$ 与 $R^m$ 同构,其中 $m = \prod_{i=1}^{n} m_i$。
$\Delta_i$ 是 $S_i$ 上的概率测度集合,$\Delta = \times_{i=1,…,N}\Delta_i$。元素 $p_i \in \Delta_i$ 是 $