协作分类器:原理、策略与实验分析
1. 神经网络克隆的挑战与局限
在智能体协作的场景中,神经网络克隆是一种知识共享的方式。训练有素的智能体可以将其突触权重副本发送给新手智能体,新手智能体通过在本地网络中应用这些权重,实现对专家智能体大脑的克隆。然而,这种方法存在诸多问题。
当新手智能体从不同环境中训练的多个教师那里获得多组权重时,很难通过融合神经网络权重来整合多源知识。由于激活函数是非线性的,简单的权重平均方法并不适用。接收方必须选择一组权重进行复制,但这意味着会丢失一些原有技能。
智能体可以通过计算成功分类比例的移动平均值来估计自身技能水平,并定期将突触权重发送给其他智能体。接收方会在质量估计值大于本地估计值时应用这些权重,同时继承移动平均值。但需要注意的是,最成功的智能体不一定是最值得模仿的。有些幸运的智能体可能因环境稳定而积累了大量效用,但缺乏应对复杂环境的经验;而那些经历过更多挑战的智能体,虽然积累的效用可能较少,但拥有宝贵的经验。因此,一个好的技能指标应综合考虑智能体的经验和性能。
此外,神经网络克隆要求捐赠者和受益者的网络架构和激活函数完全匹配。数字智能体可以实现完美复制,但生物进化的智能体很难完全相同。
2. 决策树的原理与学习方法
决策树(DT)可以看作是从根节点到叶子节点的测试树,最终确定示例是正例还是反例。基本测试可以是形如 (a < x_i < b) 的形式,其中 (a) 和 (b) 是实数。所有确定性训练集都可以用决策树描述,但一些简单的布尔函数(如多数表决)难以用决策树表达。用任意大的树表示训练集很简单,但缺乏泛化能力;而找到拟合数据的最小树通常是难以解决的问题。
<