交互式模拟退火多智能体平台与遗传算法高级锦标赛选择概念
交互式模拟退火多智能体平台(ISAM)
ISAM 平台旨在分三个阶段解决具有目标的分层多准则调度问题。该算法在处理多个准则(如 Tmax、T、NE、F)时表现出色,尤其是在交互式解决四个分层准则与目标的问题上具有创新性。
算法性能
该算法在平均相对百分比偏差(ARPD)方面几乎不受问题规模的影响。然而,SA(B,5) 和 SA(P,5) 算法在处理大规模问题时性能会变差。
实验测试
研究人员在一组 OR - 库实例上对 ISAM 算法进行了测试,包括 40 个作业问题、50 个作业问题和 100 个作业问题。算法针对不同目标迭代了 10 次,首次迭代时将目标设定为方法第一阶段找到的个体最小值。
以下是部分实验结果表格:
| 实验编号 | 准则 1(G - 目标,R - 结果,%D - 偏差百分比) | 准则 2(G - 目标,R - 结果,%D - 偏差百分比) | 准则 3(G - 目标,R - 结果,%D - 偏差百分比) | 准则 4(G - 目标,R - 结果,%D - 偏差百分比) |
| — | — | — | — | — |
| 1 | 905,905,0.000 | 30,31,0.033 | 35,39.575,0.131 | 400,461,0.153 |
| 2 | 945,945,0.000 | 29,32,0.103 | 40,40.775,0.019 | 300,377,0.257 |
| 3 | 1000,1000,0.000 | 31,31,0.000 | 45,48.025,