14、双群粒子群优化算法与机翼气动优化

双群粒子群优化算法与机翼气动优化

在当今的许多领域,优化算法的应用至关重要。本文将介绍两种不同的优化算法及其应用,一种是用于竞争选址问题的双群粒子群优化算法(Two - Swarm PSO),另一种是用于机翼气动优化的自组织迁移算法(SOMA)。

双群粒子群优化算法用于竞争选址问题

在竞争选址问题中,我们常常需要考虑多个参与者的利益和决策。双群粒子群优化算法就是为了解决这类问题而提出的。

算法基础参数与邻域结构
  • 参数设置 :在标准版本中,参数设置如下:$w = 1/(2 + \ln2) = 0.721$,$c_1 = c_2 = 0.5 + \ln2 = 1.193$,$K = 3$,并且群的大小固定为$|S| = 10 + 2\sqrt{d}$,其中$d$是解空间的维度。
  • 邻域结构 :除了随机选择邻域外,常见的邻域结构有环形(ring)$N_r$和星形(star)$N_s$邻域。环形结构中,每个粒子与前一个和后一个粒子相互作用(呈循环排列);星形结构中,每个粒子与所有粒子相互作用。具体来说,对于环形结构$N_r(i) = {i - 1, i, i + 1}$($1 < i < s$),$N_r(1) = {s, 1, 2}$,$N_r(s) = {s - 1, s, 1}$;对于星形结构$N_s(i) = S$($1 \leq i \leq s$)。
双群粒子群优化算法的具体实现

为了将粒子群优化算法应用于竞争选址问题,我们考虑二维欧几里得空间中的连续$(r|p)$ - 质

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 FASTA格式是生物信息学中一种重要的文本格式,用于表示核酸和氨基酸序列。在该格式中,DNA的四种碱基(腺嘌呤、胸腺嘧啶、胞嘧啶和鸟嘌呤)分别用A、T、C、G表示,而RNA中胸腺嘧啶被尿嘧啶(U)替代。蛋白质序列则用20个单字母代码表示氨基酸,如苯丙氨酸用F表示,酪氨酸用Y表示。许多生物信息学数据库,如DIP和NCBI,都以FASTA格式存储大量生物序列数据供研究者使用。研究者在使用BLAST等序列比对工具后,比对结果也常以FASTA格式呈现。在分析这些序列时,研究者可能需要对特定功能域或功能位点进行研究,例如在蛋白质相互作用预测中,对氨基酸序列进行二联体(连续两个氨基酸)或三联体(连续三个氨基酸)特征编码分析,这有助于了解蛋白质的结构和功能。 为了满足对大型FASTA格式序列文件进行特定长度词条特征分析的需求,本文提出了一种新的算法——压缩索引树统计算法。压缩索引树是一种高效存储和检索序列数据的数据结构,该算法通过减少存储空间需求和加快查询速度,优化了现有的生物信息学分析工具,这些工具大多缺乏特定长度词条特征分析功能。在FASTA格式文件中,序列的统计是对28个字母的字符串进行的。文件中,序列说明行以“>”开头,后面是描述序列的文字,之后直到下一个“>”开头的说明行之间是序列本身。目前,常见的分析工具如matlab生物信息学工具箱、PexFinder和BLAST等,均未提供特定长度词条特征分析功能。 文章提到的作者初砚硕是生物信息学领域的学者,他在东北林业大学获得计算机应用技术硕士学位,还在大连理工大学分别获得生物工程和计算机应用技术(第二学位)学士学位。通信联系人刘亚秋也具备丰富的研究背景。FASTA格式作为生物信息学研究的基础,简洁地存储了大量核酸和蛋白质序列信息。随着生物信息学
内容概要:本文档《MATLAB 语言从入门到精通:基础语法实战案例教程》系统介绍了MATLAB的基础知识及其应用。首先概述了MATLAB的定义、核心优势和适用场景,接着详细讲述了MATLAB的安装界面构成。文档深入浅出地讲解了MATLAB的基础语法,包括变量数据类型、运算符、流程控制语句、函数定义调用等。随后,重点介绍了MATLAB的核心数据结构——矩阵数组的操作,涵盖矩阵创建、向量操作、单元格数组和结构体的使用。绘图可视化部分展示了如何使用`plot`、`subplot`、`plot3`等函数进行二维和三维图形的绘制。数值计算章节涵盖了线性代数求解、曲线拟合、数值积分和微分方程求解等内容。符号计算部分介绍了符号变量、微积分运算和方程求解。最后,通过一个信号处理频谱分析的实战案例,演示了MATLAB在实际问题中的应用,并分享了一些高效的编程技巧。; 适合人群:具备一定数学基础的工科学生、科研人员以及对数据分析、算法开发感兴趣的初学者。; 使用场景及目标:①学习MATLAB的基本语法和核心数据结构,掌握矩阵、向量、单元格数组和结构体的操作;②理解并能够应用MATLAB的绘图和可视化功能;③掌握线性代数求解、曲线拟合、数值积分和微分方程求解等数值计算方法;④学会使用符号计算工具进行精确的数学表达式处理;⑤通过实战案例,掌握信号处理频谱分析的应用技能。; 其他说明:文档提供了丰富的实例和代码片段,帮助读者更好地理解和掌握MATLAB的各项功能。推荐结合官方文档、经典教材和在线课程进行学习,通过大量实践提升应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值