双群粒子群优化算法与机翼气动优化
在当今的许多领域,优化算法的应用至关重要。本文将介绍两种不同的优化算法及其应用,一种是用于竞争选址问题的双群粒子群优化算法(Two - Swarm PSO),另一种是用于机翼气动优化的自组织迁移算法(SOMA)。
双群粒子群优化算法用于竞争选址问题
在竞争选址问题中,我们常常需要考虑多个参与者的利益和决策。双群粒子群优化算法就是为了解决这类问题而提出的。
算法基础参数与邻域结构
- 参数设置 :在标准版本中,参数设置如下:$w = 1/(2 + \ln2) = 0.721$,$c_1 = c_2 = 0.5 + \ln2 = 1.193$,$K = 3$,并且群的大小固定为$|S| = 10 + 2\sqrt{d}$,其中$d$是解空间的维度。
- 邻域结构 :除了随机选择邻域外,常见的邻域结构有环形(ring)$N_r$和星形(star)$N_s$邻域。环形结构中,每个粒子与前一个和后一个粒子相互作用(呈循环排列);星形结构中,每个粒子与所有粒子相互作用。具体来说,对于环形结构$N_r(i) = {i - 1, i, i + 1}$($1 < i < s$),$N_r(1) = {s, 1, 2}$,$N_r(s) = {s - 1, s, 1}$;对于星形结构$N_s(i) = S$($1 \leq i \leq s$)。
双群粒子群优化算法的具体实现
为了将粒子群优化算法应用于竞争选址问题,我们考虑二维欧几里得空间中的连续$(r|p)$ - 质