优化算法在车辆路径与竞争选址问题中的应用
在解决复杂的实际问题时,优化算法起着至关重要的作用。本文将介绍两种优化算法在不同领域的应用,分别是改进的跳跃青蛙优化算法(MOJFO)在车辆路径问题中的应用,以及两群粒子群优化算法(Two - Swarm PSO)在竞争选址问题中的应用。
1. MOJFO算法在车辆路径问题中的应用
车辆路径问题(VRP)是一个经典的组合优化问题,特别是带有时间窗的车辆路径问题(VRPTW),其目标是在满足客户需求和时间窗限制的条件下,优化车辆的行驶路径,以降低成本。
1.1 MOJFO算法概述
MOJFO算法是对跳跃青蛙优化算法的改进,它结合了多目标优化的原理,用于解决VRPTW问题。该算法使用帕累托优势来引导粒子群的搜索,允许在搜索过程中动态地平衡不同目标之间的关系。
1.2 算法表现
通过对c101问题实例的典型运行,我们观察到粒子群趋向于一种平衡状态。在粒子群开始移动一段时间后,所有目标值开始在最小值和最大值之间振荡,就好像粒子群在做圆周运动。当强制全局变量g忽略某个目标(如O2),直到约束值变为零才允许g开始比较总距离时,约束值会突然增加到平衡状态。
图9.2展示了算法在c101问题实例上的粒子群演化过程。X轴表示迭代次数(粒子群的代数),Y轴显示所有目标的归一化尺度。同时,还展示了每个目标在搜索过程中探索的范围[最大值, 最小值]。
算法开始时,时间窗违反情况较为严重(只有5%的客户在时间窗内得到服务),但最