12、车辆路径问题中可行与不可行区域的探索

车辆路径问题中可行与不可行区域的探索

1. 粒子群优化算法(PSO)基础

在基础的粒子群优化算法(PSO)中,每个粒子都有一个当前正在探索的位置,以及一个用于更新粒子位置的速度 $v_{id}$。在基本的 PSO 实现里,每个粒子至少知道自己的最佳位置和其邻域的最佳位置。根据这些信息,新的粒子位置按以下方式计算:
- 速度更新公式:
$v_{id} = w \cdot v_{id} + c_1 \cdot rand() \cdot (g_i - x_{id}) + c_2 \cdot rand() \cdot (g - x_{id})$
- 位置更新公式:
$x_{id} = x_{id} + v_{id}$

上述两个公式分别决定了粒子如何更新其速度和位置。速度更新很大程度上受惯性和社会系数的影响。惯性权重分量 $w$ 鼓励粒子进行探索,而社会系数 $c_1$ 和 $c_2$ 分别代表粒子对自身已达到的最佳位置和群体目前找到的最佳位置的吸引力。为避免可预测的行为,社会系数会乘以从均匀分布 $U[0,1]$ 中选取的随机数 $rand()$。一旦使用速度更新公式更新了速度,粒子的位置就会通过将当前位置与新速度相加来改变。

基本的 PSO 算法由多次迭代组成,在每次迭代中,群体通过更新每个粒子的位置(当前解)和速度来进化。由于粒子也知道其邻域的最佳位置(其他粒子实现的最佳解),整个群体在领先粒子的引导下向更好的位置进化。PSO 因其相对容易实现、高性能且对计算资源需求较低,已被应用于许多不同的问题。

2. 多目标粒子群优化(MOPSO)

2.1 多目标优化问题与帕累托支配

许多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值