利用可见光和红外图像及蚁群优化算法检测非结构化道路
在非结构化环境中进行道路检测是一个具有挑战性的问题。传统的结构化环境车道检测方法,如利用单色单目图像和先验知识(如存在线标记)的方法,在未知的非结构化环境中由于缺乏先验信息而无法使用。本文将介绍一种使用可见光和红外图像以及蚁群优化算法(ACO)来检测非结构化道路的方法。
1. 相关背景与问题提出
- 传统方法的局限性 :在结构化环境中,车道检测可以通过使用单色单目图像和先验知识来解决。然而,在非结构化环境中,由于缺乏先验信息,这些方法不再适用。
- 其他方法的尝试 :其他研究人员尝试了不同的方法来解决机器人车辆在非结构化环境中的导航问题,包括使用模式识别技术、基于HSI颜色空间和二维空间约束的算法,以及基于道路模式特征外推的方法。但这些方法要么依赖额外工具,要么依赖道路的均匀性。
2. 车辆介绍
- Verdino车辆 :Verdino是一款低成本、自引导的电动汽车,是SIBTRA项目的一部分,旨在用于非结构化生态环境中的运输和监控。它将成为一个封闭生物气候区内乘客自主运输系统的核心。
- 车辆特点
- 动力系统 :36伏直流高效串联绕组电机,铜绕组。
- 传动系统 :电机轴直接连接到驱动桥小齿轮轴。
- 速度控制