无需嵌入的 RAG?OpenAI 是如何做到的

简介

如果您正在使用大型语言模型 (LLM) 进行构建,那么您可能已经与检索增强生成 (RAG) 纠结过。它非常适合将外部数据作为 LLM 的基础,但“R”部分——检索——可能很复杂。

我知道我花了好几个小时思考块大小、重叠策略以及选择哪种嵌入模型。还有管理矢量数据库?这可是整个基础设施方面的挑战。

所以,当我偶然发现 OpenAI 最近在他们的 Cookbook 中提出的一种不同的 RAG 方法(一种承诺绕过传统嵌入的方法)时,我这个开发者的大脑突然灵光一闪。我们真的能在没有向量数据库的情况下获得出色的检索结果吗?这个想法真的让人感觉打破了常规。

秘诀似乎在于利用 GPT-4.1 和 Gemini Flash 等新模型的海量上下文窗口。能够同时处理一百万个 token 的模型能够实现全新的工作流程。但上下文窗口大小是唯一起作用的因素吗?

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值