DIFY教程第八弹:Echarts可视化助手生成图表

我们希望通过Echars 来是实现可视化的展示各种统计数据。我们通过具体的案例来给大家介绍下,具体的效果如下:
我们可以准备一个markdown的数据然后创建一个工作流。在开始节点我们可以上传一个文件
然后是文档提取节点然后是格式转换节点:这里我们需要把提取的文档转换为csv格式的数据
# 角色
你是一个数据整理专家,擅长数据格式的整理和合格的转换
# 数据
{{#1741943310857.text#}}
# 任务
把数据转换为csv格式
然后是参数提取器:需要从上一步中的格式转换数据中获取到csv的数据指令
# 任务
提取csv格式的字符串
然后是通过执行一段 Python代码生成 满足 echarts 规范的代码代码内容是:
import csv
import json
def main(csv_string):
# 将CSV字符串分割成行
lines = csv_string.strip().split('\n')
# 使用csv模块读取数据
reader = csv.reader(lines)
# 将所有行转换为列表
data = [row for row in reader]
# 将数字字符串转换为浮点数
for row in data[1:]: # 跳过标题行
for i in range(1, len(row)):
try:
row[i] = float(row[i])
except ValueError:
pass
# 创建完整的ECharts配置
echarts_config = {
"legend": {},
"tooltip": {},
"dataset": {
"source": data
},
"xAxis": [
最后是结果的输出
{"type": "category", "gridIndex": 0},
{"type": "category", "gridIndex": 1}
],
"yAxis": [
{"gridIndex": 0},
{"gridIndex": 1}
],
"grid": [
{"bottom": "55%"},
{"top": "55%"}
],
"series": [
# 第一个网格中的折线图系列
{"type": "bar", "seriesLayoutBy": "row"},
{"type": "bar", "seriesLayoutBy": "row"},
{"type": "bar", "seriesLayoutBy": "row"},
{"type": "bar", "seriesLayoutBy": "row"},
# 第二个网格中的柱状图系列
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1},
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1},
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1},
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1},
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1},
{"type": "bar", "xAxisIndex": 1, "yAxisIndex": 1}
]
}
# 生成输出文件
output = f'```echarts\n{json.dumps(echarts_config, ensure_ascii=False)}\n```'
return {"result": output}
最后是结果的输出
{{#1741943512414.csvdata#}}
<br>
{{#1741945375879.result#}}

然后就可以测试运行了

### 关于 Dify图表功能 Dify 是一种基于人工智能技术的工具,主要用于自然语言处理和对话系统的构建。然而,在当前已知的信息中,并未提及 Dify 提供专门用于创建可视化图表的功能[^1]。 如果目标是通过 Dify 实现某种数据驱动的交互式应用,可以考虑将其与其他支持图表绘制的库或服务集成在一起。例如: #### Python 中常见的绘图库 以下是几个常用的数据可视化库及其简单示例代码: 1. **Matplotlib** Matplotlib 是一个强大的绘图库,适合生成各种静态、动态以及交互式的图形。 ```python import matplotlib.pyplot as plt # 数据准备 labels = ['A', 'B', 'C'] values = [10, 20, 30] # 绘制柱状图 plt.bar(labels, values) plt.title('Sample Bar Chart') plt.xlabel('Categories') plt.ylabel('Values') plt.show() ``` 2. **Seaborn** Seaborn 基于 Matplotlib 构建,提供了更高级别的接口来简化复杂统计图表生成过程。 ```python import seaborn as sns import pandas as pd # 创建 DataFrame data = {'Category': ['X', 'Y', 'Z'], 'Score': [85, 92, 78]} df = pd.DataFrame(data) # 可视化热力图 sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.title('Correlation Heatmap Example') plt.show() ``` 3. **Plotly** Plotly 支持生成高度互动性的图表,非常适合 Web 应用场景下的嵌入需求。 ```python import plotly.express as px # 准备数据集 df = px.data.gapminder().query("continent=='Oceania'") # 制作散点图 fig = px.scatter( df, x="gdpPercap", y="lifeExp", size="pop", color="country", hover_name="country", log_x=True, size_max=60, title="Life Expectancy vs GDP per Capita" ) fig.show() ``` 尽管上述例子展示了如何利用第三方库完成复杂的图表设计工作,但这些并不直接关联到 Dify 平台本身的能力范围之内。因此,为了实现特定业务逻辑下所需的报表或者仪表盘效果,可能需要额外探索 API 集成方式或将前端框架引入整个解决方案之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值