- 博客(25)
- 收藏
- 关注
原创 DIFY教程第八弹:Echarts可视化助手生成图表
本文介绍了如何利用Echarts实现数据可视化展示的完整流程。首先,通过上传文件并提取文档内容,将数据转换为CSV格式。接着,使用参数提取器获取CSV数据,并通过Python代码处理数据,生成符合Echarts规范的配置。代码中,CSV数据被读取并转换为列表,数字字符串被转换为浮点数,最终生成包含图例、提示、数据集、坐标轴、网格和系列的Echarts配置。最后,将生成的配置输出为Echarts代码,完成可视化展示的准备工作。整个过程展示了从数据整理到可视化展示的完整工作流。
2025-05-13 22:03:09
533
原创 DIFY教程第七弹:自然语言生成SQL应用
本文设计了一个电商系统的数据库,包括商品表(goods)、订单表(orders)、库存表(inventory)、商家表(vendors)和客户表(customers)。表结构通过外键关联,确保数据一致性。商品表与商家表、库存表关联,订单表与客户表、商品表关联。核心字段包括商品ID、名称、价格、图片、商家ID等。测试数据包括20条商家记录、50条商品记录、30条库存记录和最近半年的订单记录。SQL语句符合MySQL语法,通过Python代码执行SQL操作,并分析查询结果。系统支持自然语言生成SQL
2025-05-09 15:54:09
636
原创 DIFY教程第五弹:科研论文翻译与SEO翻译应用
二、Dify的安装方式1. 本地部署2. Docker安装3.Ollama4.Dify关联Ollama三、Dify应用讲解1. 创建空白应用2. 创建本地知识库3.知识库应用4. AI图片生成工具5. 旅游助手6. SQL执行器7. 科研论文翻译8. SEO翻译9. 标题覚文案生成10.知识库图像检索和展示11.自然语言生成SQL12. Echarts可视化助手13.-如何用DeepSeek+Kimi快速生成PPT来提升你的工作效率.........
2025-05-07 21:30:31
705
原创 DIFY教程第四弹:通过工作流来创建一个SQL语句的执行器
这里的核心是代码执行模块。这块我们是调用了我们自己创建的接口来执行数据库的操作,所以我们需要先创建。语句的执行器,也就是我们可以输入相关的。对象,我们可以编写对应的测试代码来看看。然后可以在工作流中来设置我们的代码。语句和一个包含数据库连接信息的。我们可以通过工作流来创建一个。语句然后通过工作流来连接。这么一个接口,接口我们通过。执行后可以看到对应的结果。这个接口需要接收一个。
2025-05-07 21:19:20
987
原创 DIFY教程第三弹:构建一个智能生成图片的Agent
随着图像生成技术的兴起,涌现了许多优秀的图像生成产品,比如Dall-eFlux等,我们借助来在dify中构建一个智能生成图片的Agent。去官网获取授权key。如果没注册需要先注册下然后我们需要进入dify的工具市场下载安装 Stable 插件然后我们就可以创建一个空白的Agent。输入对应的提示词然后选择对应的工具并添加授权码然后我们就可以测试效果了注意这个是一个付费的工具。提供的有一个免费的,后面需要付费购买了:进入,如果你尚未注册,会被跳转至进入注册页。SerpAPI。
2025-04-28 19:56:17
879
2
原创 DIFY教程第二弹:Dify应用讲解-创建私有知识库
我们通过Dify来创建我们的第一个简单案例,智能聊天机器人进入Dify 主界面,点击【创建空白应用】,如下图:选择【聊天助手】,输入自定义应用名称和描述,点击【创建右上角选择合适的模型,进行相关的参数配置输入有相关的回复了。此时说明Dify与本地部署的DeepSeek大模型已经连通了上面的机器人有个不足之处就是无法回答模型训练后的内容和专业垂直领域的内容,这时我们可以借助本地知识库来解决专业领域的问题。Embedding。
2025-04-28 13:58:50
717
原创 DIFY教程第一集:安装Dify配置环境
是一个让你能在本地运行大语言模型的工具,为用户在本地环境使用和交互大语言模型提供了便利,具有以下。用户安装完成后,通过简洁的命令行界面就能与模型进行交互,降低了使用大语言模型的技术门槛。景,选择不同的模型来完成各种任务,如文本生成、问答系统、对话交互等。和隐私性,还能减少因网络问题导致的延迟,实现更快速的响应。模型添加完成以后,刷新页面,进行系统模型设置。】,浏览器打开,显示running,说明启动成功。,选择安装MAC版本的安装包,点击安装即可。跳转到下面的页面,复制这个命令,在终端执。
2025-04-27 22:16:27
1093
原创 国产AI大模型超深度横评:技术参数全解、商业落地全场景拆解
知识蒸馏框架ERNIE-Tiny,支持将260B模型压缩至7B小模型且保留92%性能。:语音-文本联合编码器,语音指令理解错误率降低至3.2%(行业平均8.7%):社交关系图注意力网络,对话角色一致性达87.4%(基准模型平均65.2%):文心ERNIE在PCB板缺陷检测任务中达到99.3%准确率(需2ms/图):混元-Turing为《王者荣耀》生成NPC对话内容,玩家互动时长提升37%:知识蒸馏+量化压缩(INT8精度损失<2%):语音优先计算(语音任务能耗降低60%)
2025-04-25 19:08:34
982
原创 主题模型三大基石:Unigram、LSA、PLSA详解与对比
从独立到关联:打破词袋独立性假设从显式到潜在:发现隐藏语义结构从确定到概率:建立生成式模型框架神经网络主题模型(NTM)结合预训练语言模型(BERTopic)动态主题模型(DTM)延伸阅读PLSA原始论文主题模型可视化工具剑桥大学主题模型讲义。
2025-04-25 16:10:43
734
原创 数据结构入门【算法复杂度】超详解深度解析
总时间复杂度 = O(n×(logm+m))=O(nm)O(n×(logm+m))=O(nm)总操作次数:n+n/2+n/4+...+1=2n−1n+n/2+n/4+...+1=2n−1。适用于形式为 T(n)=aT(n/b)+f(n)T(n)=aT(n/b)+f(n) 的递归。考虑最坏情况:如快速排序从O(nlogn)O(nlogn)变为O(n2)O(n2)删除低阶项:O(n2+n)→O(n2)O(n2+n)→O(n2)忽略系数:O(3n2)→O(n2)O(3n2)→O(n2)
2025-04-24 22:05:00
1204
原创 【AI大模型】DeepSeek + 通义万相高效制作AI视频实战详解
通过DeepSeek+通义万相的智能组合,视频制作已从专业技能变为人人可用的生产力工具。立即体验文中的代码案例,开启你的AI视频创作之旅!资源合集完整项目代码预训练模型下载商业案例库。
2025-04-24 21:31:53
1420
原创 一文读懂智能体:什么是智能体?
摄像头/麦克风 → 视觉/听觉传感器数据 → 环境状态用户输入 → 意图理解# 示例:视觉感知(OpenCV图像识别)import cv2# 物体检测处理流程...
2025-04-24 17:44:31
1744
原创 深挖 DeepSeek 隐藏玩法·智能炼金术2.0:解锁AI开发的「化学方程式」
DeepSeek 最新推出的智能炼金术2.0,是面向AI开发者的「材料合成系统」。通过参数重组+知识蒸馏+反馈强化三大核心反应,能将普通模型炼化成行业专家级智能体!划重点智能炼金术2.0就像AI开发的「化学反应方程式」,只要掌握元素周期表(模型库)、反应条件(参数配置)、催化剂(优化策略),就能创造出超乎想象的智能体。立即用文中的代码案例开启你的第一次炼成实验吧!资源直达🧪材料合成:自由组合开源模型权重⚗️知识蒸馏:用大模型指导小模型进化💥反馈强化:让智能体在失败中快速迭代。
2025-04-23 21:25:03
1331
原创 【保姆级教程】手把手教你用Coze零代码搭建电商智能搜索智能体(高时效性版)
通过Coze平台,即使完全不懂编程的小白也能搭建出毫秒级响应的智能搜索系统。立即按照教程创建你的第一个智能体,体验「配置即开发」的未来式工作流!资源包下载示例项目导入文件时效性配置手册。
2025-04-22 21:16:56
1302
原创 一步步教你LangGraph Studio:可视化调试基于LangGraph构建的AI智能体!
LangGraph是基于LangChain的AI智能体开发框架,支持用有向图(DAG)描述复杂逻辑流。而是其配套的可视化调试工具,能将复杂的代码逻辑转化为直观的流程图,帮助开发者快速定位问题、优化性能!为什么需要可视化调试?传统调试方式难以追踪多节点、多分支的智能体逻辑图形化界面让数据流、执行路径一目了然实时监控节点状态,快速发现瓶颈或错误通过LangGraph Studio,开发者可以像拼乐高一样构建AI智能体,再也不用在茫茫日志中“大海捞针”。立即尝试这个案例,体验可视化调试的魅力吧!拓展资源。
2025-04-22 17:19:53
913
原创 AGI |一文快速上手LangChain的新利器:LangGraph!
LangGraph将复杂工作流的开发效率提升200%,据统计早期采用者平均减少56%的调试时间。")资源导航官方文档GitHub示例库《LangGraph企业落地白皮书》下期预告:《LangGraph可视化调试实战:从本地开发到生产部署》点击关注追踪更新!
2025-04-22 16:24:10
339
原创 【Agent系列】19种主流Agent框架全景解析:从入门到实战的终极指南
核心内容:深入解析LangChain、AutoGPT等19种Agent框架架构特点;技术亮点:LLM驱动 vs 规则驱动 vs 混合架构对比, 代码实战:智能客服系统搭建(响应速度↓43%), 选型决策树:5步匹配最佳框架。延伸价值:2024边缘计算/自进化Agent趋势预测
2025-04-21 20:57:18
671
原创 一文读懂:大模型RAG(检索增强生成)应用ai智能客服实战
据Gartner预测,到2025年70%的企业级AI应用将采用RAG技术。通过本文的代码实践与方案对比,相信你已经掌握RAG的核心要领。现在就开始构建你的第一个知识增强应用吧!# 开启你的RAG之旅")资源推荐LangChain RAG官方文档Hugging Face RAG案例库《基于RAG的知识管理系统设计》电子书提示:本文代码需配置OpenAI API密钥,国内开发者可使用文心千帆等国产大模型替代。遇到技术问题欢迎评论区交流!
2025-04-21 19:09:20
643
原创 一步步教你LangGraph Studio:可视化调试基于LangGraph构建的AI智能体
通过LangGraph Studio,开发者可以:✅ 降低80%的调试时间成本✅ 提升团队协作效率✅ 直观理解复杂业务逻辑立即行动# 开启你的第一个智能体项目扩展资源LangGraph官方文档GitHub示例仓库《LangGraph智能体设计模式》电子书。
2025-04-21 14:55:07
1008
原创 [NLP] 自然语言处理 —— 小白也能懂的NLP入门指南
让计算机看懂、听懂、会说人话的技术就像给机器安装“语言大脑”,实现:理解:读懂用户需求(如搜索关键词)生成:写出流畅文案(如AI写诗)交互:完成对话任务(如智能客服)
2025-04-20 21:13:31
1313
原创 一文搞懂LangChain:大语言模型应用开发框架全解析
LangChain是一个开源框架(Python/JS双版本),专门用于基于大语言模型的应用程序开发。上下文限制:突破LLM的固定上下文窗口业务适配:连接数据库、API等外部系统流程控制:实现多步骤推理和复杂交互LangChain正在重塑LLM应用的开发范式,其模块化设计和丰富生态大幅降低了AI应用的开发门槛。据统计,使用LangChain的开发效率比传统方式提升300%以上。随着v0.1版本的发布,框架已进入生产就绪阶段,现在正是学习和应用的最佳时机。《LangChain官方文档精读》
2025-04-20 17:39:01
1017
原创 大模型微调技术深度解析:7种核心方法、量化对比与产业实践指南
大模型微调技术正从"人工规则驱动"向"自动化+智能化"演进。未来三年,参数效率与硬件适配将成为核心技术突破方向,而产业落地需构建"数据-算法-部署"的闭环优化体系。对于从业者而言,掌握PEFT、提示学习与多任务学习的集成应用,将是解锁AI定制化价值的关键。其中fθ表示参数化模型,L为损失函数。
2025-04-20 15:19:31
1144
原创 腾讯逆势扩招2.8万人大军,大模型学习者迎来三大黄金机遇
近日,腾讯宣布启动史上最大规模校招,计划新增2.8万个就业岗位,这一消息在科技圈引发强烈震动。作为互联网行业的风向标,腾讯的"逆势扩张"决策不仅折射出其对未来技术趋势的深度判断,更为大模型学习者释放出前所未有的职业红利。本文将深度解析这一事件背后的行业密码,揭示其对大模型学习路径的三大颠覆性影响。
2025-04-18 22:06:41
1035
原创 LLM大模型:从入门到精通的万字长文详解(附学习路线图)
LLM已广泛应用于自然语言生成、文本分类、机器翻译、知识图谱补全等领域。行业垂直应用中,智能客服、医疗辅助诊断、金融风险控制等场景展现显著价值。展望LLM的技术边界突破,如模型规模扩大、多模态融合、个性化与上下文感知能力提升。同时,关注伦理与可解释性挑战,以及自动化内容创作、教育、医疗等领域的应用拓展。LLM大模型作为人工智能的基石,其潜力与价值正持续释放。通过系统性学习与实践,掌握LLM技术将成为通向智能时代的关键钥匙。
2025-04-18 16:37:30
917
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人