
深度学习
文章平均质量分 94
DD项目分享家
深耕计算机多年, 爱分享, 鼓励学习!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
毕业设计:深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序
毕业设计:深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序所得的垃圾图片数据集中有40个二级类别,图片数量合计 14802张。由图3-1可以看出,各个垃圾类别的图像数据量不均衡,其中图片数据量较少的类别有:类别0(一次性快餐盒)、类别3(牙签)、类别20(快递纸袋);数据量较多的类别是:类别11(菜叶根)、类别21(插头电线)、类别25(毛绒玩具)。原创 2021-12-17 15:03:03 · 23979 阅读 · 7 评论 -
毕业设计 - 基于机器视觉的12306验证码识别
1 数据收集12306的验证码是从8个图片中找到要求的物体,如图所示。学长统计了1000个样本,发现12306的类别数其实只有80类,它们的类别以及对应的统计个数如下表从上面的统计中我们可以看出,12306的验证码的破解工作可以转换成一个80类的分类问题。数据集预览2 识别过程物体分类的代码可以简单分成三个部分:网络搭建;数据读取;模型训练。但是在上面的三步中每一步都存在一些超参数,怎么设置这些超参数是一个有经验的算法工程师必须掌握的技能。我们会在下面的章节中介绍每一步的细原创 2021-12-14 09:58:32 · 3575 阅读 · 0 评论 -
毕业设计 - NLP:词向量Skip-gram word2vec
前面通过四次的实战,大致的将自然语言处理中经常用到的算法过了一遍,并且循序渐进,由浅入深。由刚开始的教我们如何从零开始获取语料,并且进行常用的数据分析到深度学习中最为简单的DNN网络带大家将环境搭建好,并且初步的介绍一个深度学习模型的流程,接下来就是到了最为核心的CNN模型、RNN中的GRU模型,并且分别用了典型的案例进行了实践。今天开始,我们正式进入自然与语言处理(NLP)项目的实战。其实上一篇文章已经就是NL领域中的情感分析相关的实战了,只不过是侧重的是深度学习中RNN模型中的GRU模型的讲解。今天,我原创 2021-12-10 12:45:59 · 2363 阅读 · 0 评论 -
毕业设计之 - 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测
1 基于 Keras 用 LSTM 网络做时间序列预测时间序列预测是一类比较困难的预测问题。与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。在本篇文章中,将介绍如何在 R 中使用 kera原创 2021-12-09 11:06:15 · 14980 阅读 · 11 评论 -
毕业设计 - 题目:基于深度学习的人脸表情识别 - 卷积神经网络 毕设 代码
1 项目说明给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情。在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类)。所以,本项目实质上是一个7分类问题。2 数据集介绍:(1)、CSV文件,大小为28710行X2305列;(2)、在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有287原创 2021-12-07 11:35:56 · 10097 阅读 · 23 评论 -
毕业设计之 - 题目:基于机器视觉的试卷批改系统 - opencv python 视觉识别
文章目录0 简介1 项目背景2 项目目的3 系统设计3.1 目标对象3.2 系统架构3.3 软件设计方案4 图像预处理4.1 灰度二值化4.2 形态学处理4.3 算式提取4.4 倾斜校正4.5 字符分割5 字符识别5.1 支持向量机原理5.2 基于SVM的字符识别5.3 SVM算法实现6 算法测试7 系统实现8 最后-毕设帮助0 简介今天学长向大家介绍一个机器视觉项目基于机器视觉的试卷系统 - opencv python 视觉识别毕设帮助,开题指导,技术解答????7468760411 项目背原创 2021-12-03 14:18:32 · 4510 阅读 · 7 评论 -
毕业设计 - 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正
1 思路简介目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以。查阅资料后,发现整个过程又可以细化为车牌定位、畸变校正、车牌分割和内容识别四部分。本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现。1.1 车牌定位目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征;另一种基于车牌的轮廓形状特征。基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别。经测试后发现,单独使用任何一种方法,效果均不太理想。目前比较普遍的做原创 2021-12-01 12:44:34 · 2722 阅读 · 0 评论 -
毕业设计 - 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
0 简介图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。1 VGG网络在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。如上图所示,从A-E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分原创 2021-11-29 11:05:06 · 8652 阅读 · 2 评论 -
毕业设计 - 题目:基于深度学习的中文汉字识别 - 深度学习 卷积神经网络 机器视觉 OCR
0 简介最近在帮一位同学做中文汉字识别项目,学长在这记录和发布一些项目相关知识基础和部分实现,欢迎同学们讨论学习1 数据集合学长手有3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建。用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,原创 2021-11-26 10:07:27 · 4066 阅读 · 2 评论 -
毕业设计 - 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉
1 项目背景在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久, 是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境, 近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是原创 2021-11-25 11:49:16 · 32324 阅读 · 20 评论 -
毕业设计 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别
前言今天学长向大家介绍一个深度学习项目,采用了卷积神经网络技术基于深度学习的动物识别算法研究与实现背景大家可以参考学长写的背景意义目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加原创 2021-11-23 11:28:26 · 19228 阅读 · 4 评论 -
毕业设计 - 题目: 基于深度学习的疲劳驾驶检测 深度学习
1 课题背景关于对疲劳驾驶的研究不在少数, 不少学者从人物面部入手展开。 人类的面部包含着许多不同的特征信息, 例如其中一些比较明显的特征如打哈欠、 闭眼、 揉眼等表情特征可用来作为判断驾驶员是否处于疲劳状态的依据。 随着计算机技术的不断发展, 尤其是在人工智能相关技术勃发的今天, 借助计算机可以快速有效的识别出图片中人脸特征, 对处于当前时刻驾驶员的精神状态做出判断, 并将疲劳预警信息传达给司机, 以保证交通的安全运行, 减少伤亡事故的发生。2 实现目标经查阅相关文献,疲劳在人体面部表情中表现出大致原创 2021-11-15 11:35:38 · 29063 阅读 · 37 评论 -
毕业设计 - 题目:基于卷积神经网络的手写字符识别 - 深度学习
1 简介该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是学长做的深度学习demo,大家可以用于毕业设计。这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。设计识别率高的算法,实现快速识别的系统。2 LeNet-5 模型的介绍学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:2.1 结构解析这是原原创 2021-11-11 10:42:37 · 3600 阅读 · 8 评论 -
毕业设计 : 题目:基于深度学习的水果识别 设计 开题 技术
文章目录1 前言2 开发简介3 识别原理3.1 传统图像识别原理3.2 深度学习水果识别4 数据集5 部分关键代码5.1 处理训练集的数据结构5.2 模型网络结构5.3 训练模型6 识别效果7 最后-毕设帮助1 前言Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo毕设帮助,开题指导,技术解答????7468760412 开发简介深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解, 已经在图像识别和语音识原创 2021-11-04 17:42:54 · 18079 阅读 · 7 评论