np.triu()的函数用法

本文详细介绍了NumPy中np.triu()函数的使用方法,该函数用于获取矩阵的上三角部分。通过不同参数设置,可以灵活控制上三角矩阵的形成,包括包含主对角线及其上方元素的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Signature: np.triu(m, k=0)
Docstring:
Upper triangle of an array.(返回函数的上三角矩阵)
np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
>>>array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 0,  8,  9],
       [ 0,  0, 12]])

np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], 1)
>>>array([[0, 2, 3],
       [0, 0, 6],
       [0, 0, 0],
       [0, 0, 0]])

np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], 0)
>>>array([[1, 2, 3],
       [0, 5, 6],
       [0, 0, 9],
       [0, 0, 0]])

通过上述例子可以看出np.triu()函数的具体使用。

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('/home/mw/input/data80448044/Fish.csv') df.sample(5) #输出鱼的种类 df['Species'].unique() #对这些分类变量进行编码 df['Species Code'] = df['Species'].astype('category').cat.codes df.sample(5) #输出空值信息 print(df.isnull().any()) #这里主要调用 DataFrame 中的 isnull 方法进行属性空值检测 #查看每种属性与鱼的重量的分布关系 x_vars=df.columns[1:] #分别分析所取的属性与鱼的重量的分布关系图 for x_var in x_vars: df.plot(kind='scatter',x=x_var,y='Weight') #设置绘图的行和列 plt.show() #计算属性间的相关系数图 corr = df.corr() #绘制属性相关系数的热力图 plt.figure(figsize=(16,8)) sns.heatmap(corr,annot=True,cmap="RdBu") plt.show() plt.figure(figsize=(16,8)) #配置下三角热力图区域显示模式 mask = np.zeros_like(corr,dtype=np.bool) mask[np.triu_indices_from(mask)] = True sns.set_style(style="white") #对相关系数图进行下三角显示 sns.heatmap(corr,annot=True,cmap="RdBu",mask=mask) plt.figure(figsize=(16,8)) #配置强相关模式,相关系数大于 0.7 mask = np.zeros_like(corr[corr>=.7],dtype=np.bool) # Create a msk to draw only lower diagonal corr map mask[np.triu_indices_from(mask)] = True sns.set_style(style="white") #显示强相关模式的相关系数热力值,低于参考值的部分显示为白色,从而获取强相关项 sns.heatmap(corr[corr>=.7],annot=True,mask=mask,cbar=False) plt.show()
04-01
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值