人工智能之数学基础:基于吉文斯变换完成矩阵的QR分解

本文重点

在数值线性代数中,QR分解是将矩阵分解为一个正交矩阵(Q)和一个上三角矩阵(R)的重要方法。它在求解线性方程组、计算矩阵特征值及最小二乘问题中具有广泛应用。吉文斯变换(Givens Transformation)作为实现QR分解的核心工具之一,通过平面旋转变换逐步消去矩阵元素,具有灵活性和数值稳定性。在前面的课程中,我们通过学习了平面旋转变换(吉文斯变换),本节课程中我们将对其进行应用,使用平面旋转变换来完成矩阵的分解任务。

QR分解定义

首先要求一个矩阵必须是非奇异的矩阵,这个是前提,只要它是非奇异矩阵,那么它就一定拥有有限个正交矩阵的乘积P,这个P可以将矩阵A变为可逆的上三角矩阵R,此时就PA=R,可以推出A=QR,其中Q为p的逆矩阵。

吉文斯变换完成矩阵的QR分解的实例

通过吉文斯变换完成矩阵的分解和之前的初等反射矩阵完成QR分解的思想是一致的,核心是逐渐对矩阵的每一列通过吉文斯变换进行处理

首先我们需要对矩阵的第一列进行变换,将列向量(3,0,4)变为(a,0,0)的形式,从吉文斯变换的角度来说,i=1,j=3,所以可以求出c=3/5,s=4/5,那么吉文斯变换矩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值