‘C:\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.1\\bin\\nvcc.exe‘ failed with exit code 2

文章讲述了在Windows10环境下使用Python3.7、PyTorch1.8.1和CUDA11.1时,遇到的torchlars安装错误,原因是VisualStudio版本不支持。通过下载并安装VisualStudio2019,问题得以解决,最终成功安装了torchlars。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载torchlars时的出现的bug详情:error: command ‘C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc.exe’ failed with exit code 2

背景

windows10
Python 3.7
PyTorch 1.8.1
CUDA 11.1
虚拟环境miniconda

目的

为了下载GitHub上的torchlars包

触发bug

将代码包下载到工程文件夹下
输入指令:python setup.py build develop

bug 详细描述

在这里插入图片描述

fatal error C1189: #error: – unsupported Microsoft Visual Studio version! Only the versions between 2017 and 2019 (inclusive) are supported! The nvcc flag ‘-allow-unsupported-compiler’ can be used to override this version check; however, using an unsupported host compiler may cause compilation failure or incorrect run time execution. Use at your own risk. error: command ‘C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\nvcc.exe’ failed with exit code 2

解决方案

下载了 Microsoft Visual Studio 2019 问题解决,由于 Microsoft Visual Studio version不匹配导致该错误

结果

在这里插入图片描述
输入python setup.py install
下载torchlars成功
在这里插入图片描述

根据提供的引用内容,出现"error: command 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.6\\bin\\nvcc.exe' failed with exit code 2"的错误通常是由于编译DCNv2网络时出现了问题。这个错误通常与CUDAnvcc编译器相关。 解决这个问题的方法有以下几种: 1. 确保CUDA路径正确:首先,确保你的CUDA路径设置正确。检查CUDA的安装路径是否与错误信息中提到的路径一致。如果路径不正确,可以尝试更新CUDA的安装路径或重新安装CUDA2. 检查nvcc编译器:确保nvcc编译器可用并且在正确的路径下。检查nvcc编译器的路径是否与错误信息中提到的路径一致。如果路径不正确,可以尝试更新nvcc编译器的路径或重新安装CUDA。 3. 检查CUDA版本兼容性:确保你正在使用的CUDA版本与DCNv2网络兼容。有时,不同版本的CUDA可能与特定的库或框架不兼容。尝试查看DCNv2网络的文档或官方网站,以确定所需的CUDA版本。 4. 检查依赖项:确保你的系统中安装了DCNv2网络所需的所有依赖项。有时,缺少某些依赖项可能导致编译错误。查看DCNv2网络的文档或官方网站,以获取所需的依赖项列表,并确保这些依赖项已正确安装。 5. 更新或重新安装DCNv2网络:如果以上方法都没有解决问题,尝试更新或重新安装DCNv2网络。有时,旧版本的库或框架可能存在一些已知的问题或错误。通过更新到最新版本或重新安装可以解决这些问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值