工业相机像素毫米比计算方法

工业镜头相机和镜头的相机参数可以通过询问供应商获取!
镜头的焦距(f mm)可以根据视场(FOV),工作距离(WD)和CCD芯片尺寸计算出来。

FOV视场:被摄取物体的大小,视场的大小是以镜头至被摄物体距离(WD),镜头焦距(F)以及CCD芯片尺寸确定的。

镜头的焦距,视场大小(视野),工作距离,光学倍率计算公式如下:
焦距f = WD × CCD芯片尺寸( H or V) / FOV( H or V)
视场FOV ( H or V) = 物距WD × CCD芯片尺寸( H or V) / 焦距f
视场FOV( H or V) = CCD芯片尺寸( H or V) / 光学倍率
工作距离WD= f(焦距)× CCD芯片尺寸/FOV( H or V)
光学倍率 = CCD芯片尺寸( H or V) / FOV( H or V)约等于焦距f/工作距离

2.CCD芯片的尺寸表(常规,定制除外):
1.1英寸——靶面尺寸为宽12mm高12mm,对角线17mm
1英寸 ——靶面尺寸为宽12.7mm
高9.6mm,对角线16mm
2/3英寸——靶面尺寸为宽8.8mm高6.6mm,对角线11mm
1/1.8英寸——靶面尺寸为宽7.2mm
高5.4mm,对角线9mm
1/2英寸——靶面尺寸为宽6.4mm高4.8mm,对角线8mm
1/3英寸——靶面尺寸为宽4.8mm
高3.6mm,对角线6mm
1/4英寸——靶面尺寸为宽3.2mm*高2.4mm,对角线4mm

3.毫米和像素之间的换算
像素长度与物理长度的比值我们习惯叫K值,单位是mm/pixel,用于做单位转换;项目应用上常用以下方式计算K值:
1)用规则的标定块进行计算:如圆柱形、长方体产品,相机取像后用FindCircle(求圆心、半径)、PairEdgeDistance(边对距离,求边长)求出直径或边长的像素长度A,再用卡尺测量实际的长度B,计算可得出K=A/B;
2)已知相机本身的

### C# 中实现相机像素毫米的换算方法 为了实现在C#中将相机捕捉的图像中的像素坐标转换为现实世界的毫米距离,主要依赖于相机标定的结果以及已知的实际物体尺寸。通过相机标定可以获取内参矩阵和畸变系数,在此基础上建立像素坐标与世界坐标的映射关系。 对于具体的换算过程而言,假设已经完成了相机标定并得到了相应的参数,则可以通过以下方式来完成从像素毫米的转换: #### 计算像素对应的物理长度 如果知道拍摄对象的真实大小及其在图像上的投影宽度(以像素计),那么可以根据这两个量求得每一像素代表多少毫米的距离。设真实物体宽W_mm, 对应图像中据P_pix个像素,则有: \[ \text{PixelToMMRatio} = W_{\text{mm}} / P_{\text{pix}} \] 此比例因子可用于后续任何位置处的测量计算[^2]。 #### 使用OpenCVSharp进行坐标变换 由于OpenCVSharp提供了丰富的几何变换功能,可以直接应用这些工具来进行更复杂的场景下的坐标转换操作。例如,当需要处理倾斜视角或其他复杂情况时,可采用单应性矩阵(Homography Matrix) 或者基础矩阵(Fundamental Matrix),它们能够帮助我们更好地理解不同视图间的关系,并据此调整我们的换算逻辑[^5]。 下面给出一段简单的代码片段用于展示如何基于上述原理执行基本的像素毫米转换: ```csharp using OpenCvSharp; public class PixelToMmConverter { private double pixelToMmRatio; public void SetCalibration(double realWidthInMillimeters, int widthInPixels){ this.pixelToMmRatio = realWidthInMillimeters / widthInPixels; } /// <summary> /// Converts a distance measured in pixels into millimeters. /// </summary> public double Convert(int pixelDistance){ return pixelDistance * pixelToMmRatio; } } ``` 这段程序定义了一个`PixelToMmConverter`类,它接受两个参数——实物宽度(单位:mm) 和其对应在图片内的跨度 (单位:px), 来初始化内部的比例尺(pixelToMmRatio)。之后就可以调用Convert() 函数轻松地把任意给定的像素间距转变为实际空间里的度量值了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值