
概率机器人
文章平均质量分 82
hitfangyu
机器人,SLAM爱好者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
概率机器人 第二章 递归状态估计(贝叶斯滤波)
学完了高博的《SLAM十四讲》,基本了解了SLAM的框架结构,然后看了一些ORB-SLAM的代码,跑了几个模型,看了几篇论文,感觉还是有很多关于状态估计的问题不是很清楚,然后在知乎看到了关于slam推荐书籍,有一本状态估计和概率机器人,但是状态估计目前只有英文版,发现概率机器人有中文版,所以就买了一本概率机器人。虽然翻译质量可能不是太好,但是还是能读,有些地方还是要看英文才行!感谢翻译概率机器人的作原创 2017-08-28 13:11:46 · 7665 阅读 · 0 评论 -
概率机器人 第三章高斯滤波(正态分布)
高斯滤波也就是在将贝叶斯滤波里面的所有置信度都用正态分布来表示。高斯分布具有单峰,这是符合机器人学中很多的追踪问题都是单峰的,并且后验都是以小的不确定性聚集在真实状态的周围。本章讨论了两种参数的绿滤波,基于矩参数的滤波和基于正则参数的滤波。矩参数是指均值和方差,因为均值和方差是概率分布的一阶矩和二阶矩。正则参数由信息矩阵和信息向量组成。通过矩阵求逆,可以从一个参数得到另外的一个参数,这两种方法对偶的原创 2017-08-28 13:44:34 · 3761 阅读 · 0 评论