- 博客(1284)
- 资源 (50)
- 收藏
- 关注
原创 PHP 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:给定三个不共线点A、B、C,可构造三个不同的平行四边形。通过向量运算求出第四个点D的坐标公式为D=Ax+Cx-Bx,Ay+Cy-By。该方法时间复杂度O(1),空间复杂度O(1)。示例验证了当输入点分别为(0,0)、(1,0)、(0,1)时,输出三个可能平行四边形的第四个顶点坐标。文章最后提供了PHP实现代码并邀请读者优化方案。
2025-08-06 09:40:26
204
原创 JavaScript 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:文章探讨了如何通过三个给定坐标点构建平行四边形。通过分析三种可能的边与对角线组合(AB-AC-BC、AB-BC-AC、BC-AC-AB),证明了三种平行四边形构造方式。使用向量运算推导出第四个点的坐标公式(Dx=Ax+Cx-Bx,Dy=Ay+Cy-By),并通过示例验证了该方法。文末提供了JavaScript实现代码,时间复杂度为O(1),并邀请读者提出优化建议。该算法适用于平面几何中的平行四边形构造问题。
2025-08-06 09:03:19
234
原创 Python 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:本文探讨了如何通过三个给定坐标点找出所有可能的第四点,使其构成平行四边形。通过分析三种可能的边与对角线组合关系,推导出第四点的计算公式Dx=Ax+Cx-Bx和Dy=Ay+Cy-By。文章证明了该方法确保四点互不重合,并通过Python示例验证了算法的正确性。该解决方案时间复杂度为O(1),空间效率高。最后邀请读者提出更优化的解决方案。
2025-08-05 09:28:10
256
原创 Java 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:给定三个不重合的点A、B、C,可生成三个不同的平行四边形。通过将每对边作为相邻边,第三边作为对角线,可计算出第四个点D的坐标(D=Ax+Cx-Bx, Ay+Cy-By)。时间复杂度为O(1),空间复杂度为O(1)。文章提供了Java实现代码和示例,并验证了三个点必须不同的条件。该方法高效可靠,欢迎提出优化建议。
2025-08-05 09:00:23
667
原创 C# 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
本文探讨了如何通过三个给定点确定所有可能的平行四边形顶点坐标。通过分析三种可能的边与对角线组合情况(AB和AC为边、AB和BC为边、BC和AC为边),推导出第四个点的坐标计算公式Dx=Ax+Cx-Bx,Dy=Ay+Cy-By。文章通过数学证明排除了三点重合的特殊情况,并给出具体示例展示计算方法。最后提供了一个C#实现代码,时间复杂度为O(1),空间复杂度为O(1)。作者还邀请读者提出更高效的解决方案。该算法适用于计算机图形学和几何计算领域,能快速求解平行四边形的可能顶点位置。
2025-08-04 09:53:50
618
原创 C++ 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)
摘要:给定三个不共线的点A、B、C,可以生成三个不同的平行四边形。通过向量运算,第四点D的坐标可通过公式Dx=Ax+Cx-Bx和Dy=Ay+Cy-By计算。该方法时间复杂度为O(1),空间复杂度为O(1)。文中提供了C++实现示例和具体坐标验证,并证明了三个点必须互不相同才能构成有效平行四边形。
2025-08-04 09:11:47
332
原创 Cursor 与 VS Code 与 GitHub Copilot 的全面比较
Cursor 与 VS Code 与 GitHub Copilot 的全面比较。Cursor 和 VS Code(带 GitHub Copilot)均支持 AI 编程,但在范围和集成方面有所不同。Cursor 提供 AI 优先的 IDE,具有深度项目上下文、多模型支持和协作工具。VS Code(带 Copilot)在熟悉的环境中提供精简、快速的内联帮助。选择它们取决于团队需求、工作流程和集成偏好。Cursor 和 GitHub Copilot 的 Visual Studio Code 是这一领域的热门选择。
2025-08-02 13:35:56
703
原创 如何安装和使用 Cursor AI 编辑器
《Cursor与EchoAPI:AI驱动的编程新体验》介绍了AI代码编辑器Cursor及其革命性插件EchoAPI如何提升开发效率。Cursor作为VSCode的智能替代品,提供AI代码补全、自动重构、实时错误检测等功能,特别适合初学者学习。文章详细讲解安装步骤(支持Windows/macOS/Linux)和从VSCode迁移的方法。重点推荐EchoAPI插件,它直接在编辑器内实现RESTAPI开发、调试和文档生成,具有免登录、完全免费、轻量级等优势。这套工具组合显著简化了编码和API开发流程,是开发者提升
2025-08-02 13:19:34
1103
原创 如何在 Linux 上安装 Cursor
摘要:本文详细介绍在Linux系统安装Cursor AI代码编辑器的步骤:1)下载AppImage文件;2)通过终端命令赋予执行权限;3)建议将文件移至专用目录;4)运行方法。同时说明使用AI编辑代码的操作方式(Ctrl+K快捷键),并强调该工具跨平台支持Windows/Mac/Linux,能提升编程效率。最后提供各平台常用命令速查,包括启动方式、打开文件夹和调用AI功能等核心操作指引。
2025-08-01 12:43:32
1203
原创 如何在 Mac OS 上安装 Cursor
《CursorAI安装与使用指南》摘要 CursorAI是一款跨平台智能代码编辑器,支持Mac/Windows/Linux系统。本指南详细介绍了Mac端的安装流程:从官网下载安装包,完成安全验证后即可使用。安装后可通过快捷键(Command+N)创建文件,需安装Python扩展实现语法高亮。文档重点演示了Python开发环境配置:创建虚拟环境、激活环境及执行脚本的方法。核心功能包含AI辅助编程(Command+K生成代码、Command+L智能对话)、代码修改等,能显著提升开发效率。文章最后提供了各平台通用
2025-08-01 12:17:38
1226
原创 如何在 Windows 上安装 Cursor
《CursorAI跨平台安装与使用指南》介绍了这款基于VSCode的智能代码编辑器,详细演示了Windows系统的安装流程:从官网下载后,用户可选择导入VSCode扩展或全新安装,通过Google账号登录后即可使用AI辅助功能。文章重点讲解了Ctrl+L调出AI聊天生成代码、Ctrl+K编辑现有代码等核心功能,并提供了Windows/Mac/Linux三平台的快捷操作对比(如Windows的Ctrl+L对应Mac的Command+L)。这款支持多种语言的编辑器能通过AI对话实现代码生成与实时修改,显著提升开
2025-07-31 09:56:03
1221
原创 PHP 求梯形面积的程序(Program to find area of a Trapezoid)
梯形是至少有一对平行边的凸四边形,平行边称为底边,不平行的边称为腰。梯形面积公式为(上底+下底)×高÷2。文中提供了PHP代码示例计算梯形面积,如输入底边8和10、高6时,面积为54。该算法具有O(1)的时间/空间复杂度。短文最后鼓励读者点赞收藏。
2025-07-31 09:15:43
268
原创 Javascript 求梯形面积的程序(Program to find area of a Trapezoid)
摘要:梯形是至少有一对平行边的凸四边形,平行边称为底边,其他两边称为腿。其面积计算公式为(底1+底2)×高÷2。示例展示了用JavaScript计算梯形面积的代码实现,时间复杂度为O(1)。计算结果如输入8、10、6时面积为54。该几何概念简单实用,适用于基础数学计算。
2025-07-30 09:30:44
328
原创 Python 求梯形面积的程序(Program to find area of a Trapezoid)
摘要:梯形是至少有一对平行边的凸四边形,平行边称为底边,其余为腿。梯形面积公式为(底1+底2)×高÷2。文中提供了Python计算梯形面积的代码示例(底1=8,底2=10,高=6时面积为54),并指出算法复杂度为O(1)。最后鼓励读者收藏点赞。
2025-07-30 09:00:57
254
原创 Java 求梯形面积的程序(Program to find area of a Trapezoid)
梯形是至少有一对平行边的凸四边形,平行边称为底边,非平行边称为腿。其面积公式为(上底+下底)×高÷2。示例计算显示:底边8和10、高6的梯形面积为54;底边4和20、高7的面积为84。文末附有Java计算代码,时间复杂度O(1),并附使用说明。
2025-07-29 09:30:27
403
原创 C# 求梯形面积的程序(Program to find area of a Trapezoid)
摘要:梯形是至少有一对平行边的凸四边形,平行边称为底边,其他两边为腿。其面积公式为(底边1+底边2)/2×高。示例计算显示,当底边分别为8和10,高为6时,面积为54。文中还提供了C#代码实现该计算,时间复杂度为O(1)。(99字)
2025-07-29 09:01:58
474
原创 C 语言 求梯形面积的程序(Program to find area of a Trapezoid)
摘要:梯形是至少有一对平行边的四边形,平行边称为底边,不平行的边称为腿。其面积公式为(底边1+底边2)÷2×高。文中提供了两个计算示例(8,10,6→54;4,20,7→84)和C语言实现代码。该算法时间、空间复杂度均为O(1)。(98字)
2025-07-28 09:45:28
411
原创 C++ 求梯形面积的程序(Program to find area of a Trapezoid)
梯形是至少有一对平行边的凸四边形,平行边为底边,非平行边为腰。其面积公式为:(上底+下底)×高÷2。示例计算显示,当底边为8和10、高6时面积为54;底边4和20、高7时面积为84。文章提供了C++计算梯形面积的代码实现,时间复杂度为O(1)。该算法简单高效,适用于各种梯形面积计算需求。
2025-07-28 09:00:11
363
原创 在 VS Code 中免费构建类似Cursor的环境
摘要:本文介绍如何用VSCode搭配开源工具替代收费的Cursor AI编辑器。Cursor虽然提供AI编程功能,但每月20美元且存在隐私问题。解决方案包括:1)使用VSCode作为基础IDE;2)安装Continue.dev插件实现AI代码补全和编辑;3)添加Cline扩展支持多文件AI生成;4)通过Ollama本地运行CodeLlama等优化模型,避免云端数据传输。这种组合既能实现Cursor的核心功能,又保障隐私和成本效益,其中本地模型处理基础任务,复杂任务可选择性使用Claude等付费API(单次生
2025-07-26 10:28:29
913
原创 如何从自定义或本地仓库安装 VsCode 扩展
摘要:本文介绍了无需官方市场即可安装VSCode/Cursor扩展的多种方法。包括使用vsce工具打包本地扩展为.vsix文件后安装、通过命令行直接安装,以及从GitHub远程仓库克隆后打包安装。还提供了手动复制扩展文件夹的替代方案。文中特别说明了VSCode和Cursor在安装过程中的不同操作方式,并提醒注意版本兼容性、依赖管理和更新问题。这些方法适用于需要安装私有、定制或开发中扩展的用户,提供了比官方市场更灵活的选择方案。
2025-07-26 09:51:43
915
原创 windows 使用 nssm 对 nginx 自启动异常问题处理
【摘要】Nginx在Windows系统启动失败,提示"Error setting up one or more I/O file handles"和句柄复制错误,主要原因是文件权限不足或句柄冲突。解决方案包括:检查日志目录权限(赋予SYSTEM和Users完全控制)、通过资源监视器排查进程冲突、修正配置文件路径(使用绝对路径)、重装NSSM服务并设置正确的工作目录。另建议进行手动启动测试查看详细日志,检查端口冲突,并添加杀毒软件白名单。最终通过系统化排查解决了文件句柄冲突导致的启动问题。
2025-07-25 09:33:41
675
2
原创 windows 使用 nssm 对 nginx 做自动启动
本文介绍了在Windows系统下安装nginx服务器并使用nssm将其注册为系统服务的完整步骤。主要内容包括:下载nginx 1.21.5版本并解压到指定目录;获取适合Windows版本的nssm工具;将nssm.exe复制到nginx目录;通过命令行以管理员身份运行nssm安装服务;在图形界面中配置nginx.exe路径和服务名称;最后在服务管理器中启动nginx服务。文章详细说明了各环节的注意事项,如目录路径要求、版本选择建议等,帮助用户顺利完成nginx的安装和配置。
2025-07-25 09:04:54
492
原创 如何在 Windows 上安装 MongoDB 及常见问题
MongoDB作为领先的NoSQL数据库,以其灵活性、高性能和文档存储特性成为企业首选。本文详细介绍了在Windows系统中安装MongoDB的完整流程:从官网下载MSI安装包,选择网络服务或本地用户身份,到完成完整/自定义安装。同时指导用户解决环境变量配置问题,验证MongoDB服务启动状态。文章强调MongoDB在Windows平台的无缝集成优势,为开发者提供了从本地开发到生产部署的完整解决方案。最后还解答了常见问题,帮助用户快速掌握MongoDB在Windows环境下的使用要点。
2025-07-24 09:33:26
1234
原创 在 Windows 上安装设置 MongoDB及常见问题
MongoDB是一个开源的NoSQL文档数据库,使用灵活的JSON格式(BSON)存储数据,支持动态模式变更。本文详细介绍了Windows系统下MongoDB的安装步骤,包括下载社区服务器版本(7.0.11)、安装MongoDB服务、配置环境变量以及安装MongoDB Shell(2.2.9版本)。安装完成后,通过命令行验证安装成功,并演示了数据库创建(db.createCollection)等基本操作。文章还解答了MongoDB的概念、用途(处理非结构化数据)、数据类型(BSON格式)以及推荐工具(Stu
2025-07-24 09:09:09
1255
原创 PHP 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
梯形是一种四边形,至少有一对平行边(底边),其他两边为腰。其面积公式为0.5*(上底+下底)*高,周长公式为四边之和。示例展示了不同尺寸梯形的计算过程,如a=5,b=6,h=8时面积为44,周长为18。文中提供了PHP实现代码,包含两个函数分别计算面积和周长,时间复杂度均为O(1)。代码演示了具体调用方法,输入a=5,b=15等参数时输出面积200和周长35。该内容适用于几何计算编程实现。
2025-07-23 09:20:20
422
原创 Javascript 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
梯形是一种至少有一对边平行的四边形,平行边称为底,其他两边为腿,两底间的垂直距离为高。梯形面积公式为0.5*(a+b)*h,周长公式为a+b+c+d。示例计算显示:当a=5,b=6,c=4,d=3,h=8时,面积为44,周长为18;当a=10,b=15,c=14,d=11,h=21时,面积为262.5,周长为50。文末提供了JavaScript实现代码,计算复杂度均为O(1)。
2025-07-23 09:00:51
330
原创 Python 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
梯形是一种特殊的四边形,至少有一对平行边(称为底),其他两边为腿。梯形面积公式为0.5*(a+b)*h(a、b为底,h为高),周长公式为a+b+c+d。示例计算显示:当a=5,b=6,c=4,d=3,h=8时,面积为44,周长为18;a=10,b=15,c=14,d=11,h=21时,面积为262.5,周长为50。文中提供了Python代码实现这两种计算,时间复杂度为O(1)。
2025-07-22 09:33:22
278
原创 Java 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
摘要:本文介绍了梯形的基本概念和计算公式。梯形是一种至少有一对边平行的四边形,其面积公式为0.5*(上底+下底)*高,周长等于四条边之和。文中提供了两个计算实例,并给出了Java语言实现代码示例,包含计算面积和周长的方法。代码时间复杂度为O(1),空间复杂度为O(1)。文章最后还附有提示信息,鼓励读者收藏、点赞和评论。
2025-07-22 09:00:40
512
原创 C# 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
摘要:梯形是具有一对平行边(底边)的四边形,其他两边为腰。其面积公式为(上底+下底)×高÷2,周长为四边之和。文中提供了C#代码实现梯形面积与周长的计算,包括示例输入输出(如a=5,b=15,c=11,d=4,h=20时,面积为200,周长为35)。算法的时间与空间复杂度均为O(1)。该程序通过简单数学运算快速求解梯形参数,适用于几何计算场景。
2025-07-21 09:35:02
784
原创 C++ 计算梯形面积和周长的程序(Program to calculate area and perimeter of Trapezium)
本文介绍了梯形的基本概念和计算方法。梯形是一种至少有一对边平行的四边形,其中平行边称为底,非平行边称为腿,两底间的垂直距离为高。文章给出了梯形面积(0.5*(a+b)*h)和周长(a+b+c+d)的计算公式,并提供了两个具体算例。同时展示了用C++实现计算的代码示例,包含计算函数和主程序,其时间复杂度和空间复杂度均为O(1)。文末附有鼓励互动的内容提示。
2025-07-21 09:00:14
512
原创 使用 .NET 6.0 的简单 WebSocket 客户端和服务器应用程序
本文介绍了如何使用.NET6和ASP.NETCore快速搭建WebSocket服务器和客户端。服务器端通过简单的代码实现每秒发送时间戳消息,客户端则建立连接并接收消息。文章展示了.NET平台实现WebSocket通信的便捷性,适用于远程控制等场景,同时也提醒了实际应用中需要完善错误处理机制。整个方案简洁高效,体现了.NET在现代网络编程中的优势。
2025-07-19 13:24:48
813
原创 在 .NET Core 中创建 Web Socket API
本文介绍了在ASP.NET Core中创建WebSocket API的完整步骤。首先需要创建API项目并在Startup中启用WebSocket支持;然后实现WebSocketHandler类处理连接和消息收发;接着创建WebSocket控制器接受连接请求;最后配置依赖注入并测试API。文章提供了详细的代码示例,包括消息处理逻辑和JavaScript测试客户端代码,帮助开发者快速构建实时通信功能。
2025-07-19 13:13:50
810
原创 在 ASP.NET Core 和 JavaScript 中配置 WebSocket
本文介绍了WebSocket协议及其在客户端与服务器通信中的应用。WebSocket通过持久连接实现双向数据交换,适用于实时交互场景。文章详细说明了WebSocket的握手过程、四个核心事件(onopen、onmessage、onerror、onclose)和两个主要方法(send、close)。同时提供了基于Asp.Net MVC Core的WebSocket实现步骤,包括创建Web应用程序、添加JavaScript代码、配置Startup.cs和HomeController等关键环节。通过示例演示了We
2025-07-18 10:12:39
864
原创 如何 ASP.NET Core 中使用 WebSocket
摘要:本文详细介绍了在ASP.NET Core中实现WebSocket通讯的完整流程。文章首先阐述了WebSocket在实时应用中的优势,如聊天室、金融交易等场景。然后分三个阶段演示实现过程:1)服务器端配置WebSocket中间件和路由;2)客户端创建WebSocket连接;3)测试多个客户端连接。最后通过构建聊天室应用演示了多用户消息广播功能,包括用户加入/离开通知等特性。教程提供了完整的代码示例,帮助开发者快速掌握ASP.NET Core中WebSocket的实现方法。
2025-07-18 09:04:14
1354
原创 .NET 8.0 使用 WebSocket
本文介绍了WebSocket技术及其在.NET和C#中的实现方法。WebSocket支持全双工实时通信,适用于在线游戏、聊天应用等需要低延迟的场景。文章详细讲解了WebSocket协议机制、与传统HTTP的对比优势,以及在ASP.NET Core中设置WebSocket服务器和使用C#构建客户端的具体步骤。还探讨了多客户端管理、消息处理、安全性和性能优化等高级功能,并提供了调试测试建议。通过实际代码示例,展示了如何构建高效、可扩展的实时通信系统。
2025-07-17 09:45:21
799
原创 使用 .NET Core 的原始 WebSocket
本文介绍了WebSocket协议在.NET Core WebAPI中的实现方法。WebSocket通过持久连接实现全双工通信,比传统HTTP更适合实时应用。文章详细说明了六个实现步骤:1)在Program.cs启用WebSocket;2)创建WebSocket服务管理连接;3)建立WebSocket控制器处理请求;4)注入服务;5)在API操作中添加通知;6)前端JavaScript连接示例。这种实现方式允许服务器主动推送数据变更通知,适用于需要实时更新的应用场景。
2025-07-17 09:00:43
1396
原创 Javascript 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要:本文介绍了平行四边形周长的计算方法,其公式为(2a)+(2b),其中a和b为相邻边长。通过JavaScript代码示例演示了计算过程,如输入a=10、b=8时输出周长36。该算法具有O(1)的时间复杂度和辅助空间复杂度,适用于快速计算平行四边形周长。(97字)
2025-07-16 09:35:03
358
原创 PHP 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要: 本文介绍了计算平行四边形周长的方法。平行四边形的对边长度相等,周长公式为周长 = 2*(边长a + 边长b)。示例中,当边长a=10、b=8时,周长为36;当a=25.12、b=20.4时,周长为91.04。文章还提供了PHP代码实现该计算,时间复杂度为O(1)。
2025-07-16 09:18:41
267
原创 Python 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
本文介绍了平行四边形周长的计算方法。平行四边形对边平行且相等,其周长计算公式为(2×边长a)+(2×边长b)。通过Python代码示例演示了该算法的实现,时间复杂度为O(1),空间复杂度为O(1)。示例输入a=10,b=8时,输出周长为36.0;输入a=25.12,b=20.4时,输出91.04。该算法简单高效,适用于快速计算平行四边形周长。
2025-07-15 09:26:20
371
原创 Java 平行四边形周长计算程序(Program for Circumference of a Parallelogram)
摘要:本文介绍了如何计算平行四边形的周长,公式为(2a)+(2b),其中a和b是相邻边长。提供了Java代码示例,输入a=10、b=8时输出36。程序时间复杂度为O(1),空间复杂度O(1)。计算原理基于平行四边形对边相等的特性。
2025-07-15 08:55:42
204
将大学阶段的实训内容,按照专业课程设计(包括上机实验、课程设计、下学年的毕业设计等)、竞赛项目、科创项目、小型编程项目这四个门类进行整理汇总
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.1
2025-03-05
带有 Multisim 10 示例的基本电子电路
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.4
2025-03-05
deepseek java sdk deepseek4j-1.4.5
2025-03-06
用于快速工程的指南、论文、讲座、笔记本和资源 Prompt-Engineering
2025-03-05
springmvc框架模板(含例子,可以用作计算机毕业设计开发) springmvc源代码
2025-03-05
机器人算法的 Python 示例代码
2025-03-05
DeepSeek API 的 Python 客户端
2025-03-06
OpenCV C++ 示例
2025-03-05
.NetCore WPF Rtsp视频流转Websocket实现Web实时查看摄像头 C#通过FFmpeg播放Rtsp流
2025-03-03
使用 SignalR 在 .NET Core 8 最小 API 中构建实时通知
2025-03-03
C# 简单数字时钟源代码
2025-03-03
C++与C#(仅支持YUV2编码格式下截图)EasyPlayer RTSP是一款精炼、高效、稳定的RTSP流媒体播放器
2025-03-03
C++ 基础知识了解、学习及源代码案例分享
2025-03-05
C语言比较全面的经典源代码示例包含220个例子
2025-03-05
适用于 .NET Core 3.0-.NET 5.0 的 C# RTSP 客户端 视频截图
2025-03-03
在 .NET 8.0 Web API 中实现 JWT 身份验证和基于角色的授权
2025-07-25
如何使用 ASP.NET Core 创建基于角色的 Web API
2025-07-25
.NET 8.0 使用 JWT Bearer Token 的身份验证 API 示例 AuthDemoApi
2025-07-24
.NET 8.0 使用存储库模式和 Dapper 进行日志记录和单元测试的清洁架构
2025-07-24
PHP API 客户端, deepseek API 交互 deepseek-php-client-2.0.3
2025-03-06
TypeScript 中的 WebSocket 入门
2025-06-25
使用 .NET Core 和 SignalR 构建实时聊天服务-聊天客户端(前端)
2025-06-12
使用 .NET Core 和 SignalR 构建实时聊天服务-聊天服务(后端)
2025-06-12
使用 .NET Core 7 SignalR 构建实时聊天应用程序
2025-06-12
.NetCore 8.0 反射与源生成器(Reflection vs Source Generators)
2025-06-06
postgis测试数据库 科罗拉多州百年一遇的洪泛区 包含 kmz、geojson、shapefile
2025-03-20
该项目是一个轻量级 AI 代理,利用 Deepseek LLM 在本地运行并与 Spring Boot 集成
2025-03-06
.NET 9.0 中 DeepSeek 模型入门示例
2025-03-06
使用 PHP Deepseek 实现问答 ask-deepseek
2025-03-06
deepseek java sdk deepseek4j-1.4.3
2025-03-07
Windows 解压版 PostgreSQL16.8-1
2025-03-18
Windows 解压版 PostgreSQL16.8-1 对应 PostGIS 3.5.2
2025-03-18
python 强大的混合专家 (MoE) 语言模型 DeepSeek-V3
2025-03-06
使用纯 C++ 对 DeepSeek 系列大型语言模型进行 CPU 推理
2025-03-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人