支持向量机 SVM

SVM 是机器学习中的一种分类方法,SVM 的目标是找到一个超平面,找到每个分类的数据点离超平面的距离最小,这些最小距离的数据点就是 Support Vector 支持向量。
在这里插入图片描述
SVM 分为线性可分和线性不可分,线性可分又分为硬距离和软距离,软距离添加了一些容错,允许某些数据点分类错误。对于线性不可分,通过核函数转为线性可分。

  • 线性可分,公式如下,确保 yi​(w⋅xi​+b)≥1
    在这里插入图片描述
  • 软距离,允许分类错误,确保 yi​(w⋅xi​+b)≥1−ξi
    在这里插入图片描述
  • 线性不可分,通过核函数将非线性函数转为线性函数,核函数可以是线性函数或者高斯函数。确保 0≤αi​≤C,α 为拉格朗日乘子。
    在这里插入图片描述

SKLearn 实现 SVM

线性可分,硬距离,完全可分。
在这里插入图片描述

import numpy as np
import pandas as pd
import matplotlib.pyplot
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值