机器学习之线性回归

线性回归是机器学习中比较简单的模型,给定 X 和 Y 的值拟合出一条直线,数据点离线的距离越近想过越好。如果一个特征,最终会呈现为一条直线,如果是多参数,输入就是一个矩阵,通过超平面进行分割。线性回归的损失函数使用均方差,这个好理解是方差和越小越好。我们是用 Sklearn 来实现线性回归。

安装相关类型

pip install numpy
pip install pandas
pip install 

加载训练数据

加载数据,442 Batch,10 个特征。

from sklearn.datasets import load_diabetes
diabetes = load_diabetes()
data = diabetes.data
target = diabetes.target 
print(data.shape)
print(target.shape)
print(data[:5])
print(target[:5])

在这里插入图片描述
制作训练集和测试集

# 导入sklearn diabetes数据接口
from sklearn.datasets import load_diabetes
# 导入sklearn打乱数据函数
from sklearn.utils import shuffle
# 获取diabetes数据集
diabetes = load_diabetes()
# 获取输入和标签
data, target = diabetes.data, diabetes.target 
# 打乱数据集
X, y = shuffle(data, target, random_state=13)
# 按照8/2划分训练集和测试集
offset = int(X.shape[0] * 0.8)
# 训练集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值